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Prerequisites

Here is a list of facts to use without notice.
• Basic notions from algebra, such as groups, rings, fields and their homomor-

phisms.
• Elementary ideal theory and factor rings, prime and maximal ideals.
• Polynomial rings, power series rings and principal ideal domains.
• Integral domains and the construction of fractions.
• The notion of field extensions.
• Linear algebra, bilinear forms, matrices and determinants.

A special choice has been made, that the material is presented without modules. This
affects a few standard formulations of popular propositions. More seriously this means
that there is neither homological nor sheaf theoretic methods available.
The propositions are stated complete and precise, while the proofs are quite short. No
specific references to the literature are given. But lacking details may all be found at
appropriate places in the books listed in the bibliography.
The last part is sporadic, informal and only initiates the study of concrete objects. In an
elaborate form this should have been included in the ordinary text.

Nielsen, University of Aarhus, Summer 2003
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CHAPTER I

Affine rings

All rings are commutative with 1.

1. Hilbert’s basis theorem

Definition 1.1. A ring is noetherian if every ideal is finitely generated. A factor ring of a
noetherian ring is noetherian.

Proposition 1.2. Let A be a noetherian ring. Any nonempty set of ideals contain members
maximal for inclusion. If A is nonzero, then it contains a maximal ideal.

Proof. If a set of ideals does not contain a maximal member then choose an infinite as-
cending chain I1 ⊂ I2 ⊂ . . . . The union ∪Ii is finitely generated giving Ii = Ii+1 for
large i. By contradiction maximal members exist. �

Definition 1.3. For an ideal I in a ring A the radical is
√

I = {a ∈ A|an ∈ I for some n}

A ring is reduced if
√

0 = 0.

Proposition 1.4. Let A be a noetherian ring. The radical of an ideal I is the intersection
of all prime ideals containing I . High powers of the radical are contained in the ideal
itself

(
√

I)s ⊂ I

Proof. Assume a is not in the radical of I . By 1.2 there is an ideal maximal among the
ideals containing I and not containing any power of a. This is a prime ideal excluding a.
The inclusion follows as the radical is finitely generated. �

Proposition 1.5. Let A be a noetherian ring. Then the ring of polynomials A[T ] is noe-
therian.

Proof. Assume I ⊂ A[T ] to be a not finitely generated ideal. Choose a sequence f1, f2, · · · ∈
I such that

fi = aiT
di + terms of lower degree , ai 6= 0

and fi+1 has lowest degree in I − (f1, . . . , fi). The ideal of leading coefficients is finitely
generated by a1, . . . , an. an+1 = b1a1 + · · ·+ bnan and d1 ≤ · · · ≤ dn+1 = d gives

fn+1 − b1T
d−d1f1 − · · · − bnT d−dnfn

in I − (f1 . . . , fn) of degree less than d. By contradiction the ideal I is finitely generated.
�

Proposition 1.6. Let A ⊂ B be a ring extension. Let J ⊂ Ac1 + · · · + Acn ⊂ B be a
subset satisfying AJ ⊂ J . If A is noetherian, then there are b1, . . . , bm ∈ J such that
J = Ab1 + · · ·+ Abm.

Proof. J is identified with an ideal in a factor ring of A[T1, . . . , Tn], which is noetherian
by 1.5. �
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8 I. AFFINE RINGS

Definition 1.7. Let k be a field. For an ideal I of the ring of polynomials k[T1, . . . , Tn]
the factor ring k[T1, . . . , Tn]/I is an affine ring. A homomorphism of affine rings is the
identity on the field k.

Theorem 1.8 (Hilbert’s basis theorem). An affine ring is noetherian.

Proof. Follows from 1.5. �

Definition 1.9. Let A be an integral domain with fraction field K. For a subset S of A
excluding 0 the fractions with denominators a finite product of elements from S is a subring

A ⊂ S−1A ⊂ K

called the localization. Contraction of ideals identify prime ideals in S−1A with prime
ideals in A excluding S. If Q ⊂ S−1A and P = A ∩ Q then the fraction fields of A/P
and S−1A/Q are identified.

Proposition 1.10. Let A be a noetherian integral domain, then any localization S−1A is
noetherian.
If A is an affine ring and S = {s}, then the localization

S−1A ' A[T ]/(sT − 1)

is affine.

Proof. For an ideal J in S−1A generators of A∩ J will generate J . Affinity follows from
1.5. �

2. Noether’s normalization theorem

Definition 2.1. Let B be a ring containing a subring A. An element b ∈ B is integral over
A if it is root in a monic polynomial with coefficients in A. By Cramer’s rule an element b
is integral over A if and only if there are finitely many elements b1, . . . , bn ∈ B such that

1, bb1, . . . , bbn ∈ Ab1 + · · ·+ Abn

The set of elements integral over A is a subring called the integral closure. B is integral
over A if every element in B is integral over A. If A is a field, integral is usually called
algebraic and a polynomial relation of least degree is called minimal. A finitely generated
integral extension A ⊂ B is called finite, since there is a finite set b1, . . . , bn ∈ B such
that

B = Ab1 + · · ·+ Abn

and conversely an extension satisfying the claim is finite. Clearly, if A ⊂ B and B ⊂ C
are finite then A ⊂ C is finite.

Proposition 2.2. Let K be a field and p(T ) a polynomial in K[T ]. Then there is a finite
field extension K ⊂ L such that p(T ) factors in linear factors in L[T ].
If K ⊂ L1 and K ⊂ L2 are finite field extensions then there is a finite field extension
K ⊂ L such that L1 ∪ L2 ⊂ L.

Proof. Assume p(T ) irreducible. In L = K[U ]/(p(U)) the class of U is a root of p(T ).
�

Definition 2.3. A field K such that any polynomial in K[T ] factors in linear factors is
called algebraically closed. It follows that any field has an algebraic extension field which
is algebraically closed.

Proposition 2.4. Let an integral domain B be integral over a subring A. Then A is a field
if and only if B is a field.
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Proof. Let A be a field, a minimal equation for a nonzero b ∈ B

bn + · · ·+ a0 = 0

gives

b−1 = −a−1
0 (an−1b

n−2 + · · ·+ a1) ∈ B

Let B be a field, an integral equation for the reciprocal of a nonzero a ∈ A

a−n + · · ·+ a0 = 0

gives

a−1 = −(a0a
n−1 + · · ·+ an−1) ∈ A

�

Proposition 2.5. Let K be a finitely generated field over a subfield k. Then there exist a
unique number n and a set of elements t1, . . . , tn ∈ K such that the ring k[t1, . . . , tn] is a
polynomial ring and K is finite over the fraction field k(t1, . . . , tn).

Proof. Let t1, t2, . . . be a finite set of generators and t1, . . . , tn a maximal subset such
that k[t1, . . . , tn] is a ring of polynomials. Then K is algebraic over the fraction field
k(t1, . . . , tn). For another set u1, . . . , um satisfying k[u1, . . . , um] is a ring of polynomials
and K is algebraic over the fraction field k(u1, . . . , um) we may assume n ≤ m. For
n = 0, K is algebraic over k, so m = 0. If 0 < n then there is a nonzero polynomial
f ∈ k[T1, . . . , Tn, U1] such that f(t1, . . . , tn, u1) = 0. Since u1 is not algebraic over
k we get after renumbering, that the set u1, t2, . . . , tn satisfy k[u1, . . . , tn] is a ring of
polynomials and K is algebraic over the fraction field k(u1, . . . , tn). Exchanging the field
k with k(u1) gives by induction after n that n− 1 = m− 1 and uniqueness follows. �

Definition 2.6. The set of elements in 2.5 is a transcendence basis and the number of
elements in such a set is the transcendence degree denoted

trdegk K

A set of elements t1, . . . , tn generating a polynomial ring is called algebraically indepen-
dent and the extension k ⊂ k(t1, . . . , tn is pure transcendental.

Theorem 2.7 (Noether’s normalization theorem). Let k be a field and A an affine ring
over k. Assume that A is an integral domain and let K be the fraction field. Then there
exist elements t1, . . . , tn ∈ A such that t1, . . . , tn is a transcendence basis of K over k,
and A is integral over the subring of polynomials k[t1, . . . , tn].

Proof. Let t1, . . . , tn ∈ A be a minimal set such that A is integral over k[t1, . . . , tn]. If
f ∈ k[T1, . . . , Tn] is a nonzero polynomial of degree less than d in every variable with
f(t1, . . . , tn) = 0, then the substitutions

U1 = T1 − T dn−1

n , . . . , Un−1 = Tn−1 − T d
n

give a polynomial

f(U1 + T dn−1

n , . . . , Un−1 + T d
n , Tn) ∈ k[U1, . . . , Un−1, Tn]

Any monomial T d1
1 . . . T dn

n gives a monomial in Tn over k[U1, . . . , Un−1] of unique degree
d1d

n−1+· · ·+dn as seen by d-adic expansion. This makes tn integral over k[u1, . . . , un−1]
and contrasts the minimality of n, showing that t1, . . . , tn is a transcendence basis. �
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3. Hilbert’s Nullstellensatz

Theorem 3.1 (Hilbert’s Nullstellensatz). Let k ⊂ K be a field extension. If K is an affine
ring over k, then K is finite over k.

Proof. By noetherian normalization 2.7 find t1, . . . , tn such that K is integral over the
subring of polynomials k[t1, . . . , tn]. By 2.4 k[t1, . . . , tn] is a field. It follows that n = 0
and K is algebraic over k. �

Proposition 3.2. If φ : A → B is a homomorphism of affine rings over k and N is a
maximal ideal in B, then φ−1(N) is a maximal ideal in A.

Proof. By Hilbert’s Nullstellensatz k → B/N is finite. Then the extension A/φ−1(N) ⊂
B/N is integral giving maximality by 2.4. �

Theorem 3.3. Let k be an algebraically closed field. Any maximal ideal of the ring of
polynomials k[T1, . . . , Tn] has the form

(T1 − t1, . . . , Tn − tn)

for a unique sequence t1 . . . , tn ∈ k.

Proof. An ideal of the given form is maximal. If M is a maximal ideal, then the factor ring

k[T1, . . . , Tn]/M

is an affine field extension of the constants k. Since k is algebraically closed it follows from
Hilbert’s Nullstellensatz 3.1 that this extension is trivial. There exists unique t1, . . . , tn ∈ k
such that

ti = Ti + M , i = 1, . . . , n

showing
(T1 − t1, . . . , Tn − tn) ⊂ M

�

Proposition 3.4. The radical of an ideal in an affine ring is the intersection of maximal
ideals.

Proof. By 1.4 it is enough to show that the zero ideal in an affine integral domain is the
intersection of maximal ideals. Let f be nonzero in the affine domain A over k. The affine
ring B = A[T ]/(fT − 1) is nonzero and therefore contains a maximal ideal N . By 3.1 the
field B/N is finite over k and then integral over the domain A/A ∩N . By the 2.4 A ∩N
is a maximal ideal of A, which by construction avoid f , so the intersection of all maximal
ideals is zero. �

Proposition 3.5. An affine ring A over k is a finite dimensional k-vector space if and only
if there are only finitely many maximal ideals M1, . . . ,Mr. In the finite dimensional case
all prime ideals are maximal and

0 = M i1
1 . . .M ir

r = M i1
1 ∩ · · · ∩M ir

r

A ' A/M i1
1 × · · · ×A/M ir

r

Proof. An integral domain finite dimensional over k is a field so prime ideals are maximal.
Since M1 ∩ · · · ∩Mj 6⊂ Mj+1 there are only finitely many maximal ideals. A high power
of the radical (M1∩· · ·∩Mr)s = 0. Let ij be given such that M

ij

j = M
ij+1
j and conclude

by the Chinese remainder theorem below. �

Proposition 3.6 (Chinese remainder theorem). Let ideals I1, . . . , Ik in a commutative ring
A satisfy Ir + Is = A for r 6= s.

(1) For x1, . . . , xk ∈ A there is a x ∈ A, such that x− xr ∈ Ir for r = 1, . . . , k
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(2)
I1 · · · Ik = I1 ∩ · · · ∩ Ik

(3) The product of projections

A/I1 · · · Ik → A/I1 × · · · ×A/Ik

is an isomorphism.

Proof. (1)Choose ar ∈ I1 and br ∈ Ir such that ar + br = 1. The product

(a2 + b2) . . . (ak + bk) = 1 ∈ I1 + I2 · · · Ik

Similarly choose ur ∈ Ir and vr ∈
∏

s 6=r Is with ur +vr = 1. Let x = x1v1 + · · ·+xrvr.
(2) For x in the intersection assume by induction that x ∈ I2 · · · Ik. From (1) x =
u1x + xv1 contained in the product. (3) Subjectivity follows from (1) and the kernel is
the intersection. �

4. The polynomial ring is factorial

Definition 4.1. Let A be a unique factorization domain and let f = anTn + · · · + a0 be
a polynomial over A. Then the content of f , c(f), is the greatest common divisor of the
coefficients a0, . . . , an.

Proposition 4.2 (Gauss’ lemma). Let A be a unique factorization domain. For polynomi-
als f, g ∈ A[T ]

c(fg) = c(f)c(g)

Proof. Assume by cancellation that c(f), c(g) are units in A. For any irreducible p ∈ A
the projections of f, g in A/(p)[T ] are nonzero. Since A has unique factorization the ideal
(p) is a prime ideal. It follows that the projection of the product fg in A/(p)[T ] is also
nonzero and therefore p is not a common divisor of the coefficients of the product fg. �

Proposition 4.3. Let A be a unique factorization domain. Then the ring of polynomials
A[T ] is a unique factorization domain.

Proof. Let K be the fraction field of A, then the polynomial ring K[T ] is a principal
ideal domain. Let f ∈ A[T ] and use unique factorization in K[T ] to get a ∈ A and
p1, . . . , pn ∈ A[T ], irreducible in K[T ], such that

af = p1 . . . pn

Assume by 4.2 that a = 1 and c(p1), . . . , c(pn) are units in A. Apply 4.2 once more to see
that p1, . . . , pn are irreducible in A[T ]. Uniqueness follows by cancellation. �

Theorem 4.4. Let k be a field. Then the polynomial ring k[T1, . . . , Tn] is a unique factor-
ization domain.

Proof. Follows by induction from 4.3. �

Definition 4.5. An integral domain is normal if the integral closure in the fraction field is
the domain itself. The integral closure in a field extension of the fraction field is a normal
ring called the normal closure.

Proposition 4.6. A unique factorization domain is normal.

Proof. If a fraction a
b satisfies(a

b

)n

+ an−1

(a

b

)n−1

+ · · ·+ a0 = 0

it follows that any prime divisor in b divides a, so by cancellation b is a unit. �
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5. Krull’s principal ideal theorem

Proposition 5.1. Let A be an affine integral domain over a field k with fraction field K.
Let P be a prime ideal of A and let k(P ) denote the fraction field of A/P . If P is nonzero
then

trdegk k(P ) < trdegk K

Proof. Assume n = trdegk K and let t1, . . . , tn ∈ A project to t̄1, . . . , t̄n ∈ A/P . For
t ∈ P nonzero there is an irreducible polynomial f ∈ k[T1, . . . , Tn, T ] such that

f(t1, . . . , tn, t) = 0, in A

This gives
f(T1, . . . , Tn, 0) 6= 0, in k[T1, . . . , Tn]

f(t̄1, . . . , t̄n, 0) = 0, in A/P

so trdegk k(P ) < n. �

Proposition 5.2. Let A be an affine ring over a field k. Then
(1) Any prime ideal in A contains a minimal prime ideal.
(2) There are only finitely many minimal prime ideals in A.

Proof. (1) By 5.1 any descending chain of prime ideals will stop. (2) If the set of ideals
such that the factor ring have infinitely many minimal prime ideals is nonempty, it contains
a maximal member with this property by 1.2. In this factor ring there are only finitely many
minimal prime ideals containing a given nonzero ideal. There exist nonzero elements a, b
with product ab = 0. A minimal prime must contain either a or b so there is only finitely
many of these. In conclusion there are only finitely many minimal prime ideals in an affine
ring. �

Proposition 5.3. Let P1, . . . , Pr be ideals in a ring A with at most 2 not being prime
ideals. If an ideal I ⊂ P1 ∪ · · · ∪ Pr then I ⊂ Pi for some i.

Proof. Assume by induction on r > 1 that I is not contained in any subunion. Then choose

aj ∈ I ∩ Pj − ∪i 6=jPi

giving the element
ar + a1 . . . ar−1

in I but not in any Pi, contradicting the hypothesis. �

Theorem 5.4 (Krull’s principal ideal theorem). Let A be an affine integral domain over a
field k with fraction field K. Let P be a prime ideal of A and let k(P ) denote the fraction
field of A/P . If P is minimal among the prime ideals of A containing a nonzero element
f ∈ A then

trdegk k(P ) = trdegk K − 1

Proof. Let P1, . . . , Ps be the other minimal primes over f and let g ∈ P1 . . . Ps−P . After
exchanging the ring A with A[T ]/(gT − 1) we may assume that P is the only minimal
prime over f . By Noether’s normalization Theorem 2.7 choose t1, . . . , tn ∈ A such that
k[t1, . . . , tn] is a polynomial ring and A is integral over this subring. Let

fm + am−1f
m−1 + · · ·+ a0, ai ∈ k[t1, . . . , tn]

be a relation of least degree, then

a0 = −(fm−1 + · · ·+ a1)f ∈ P ∩ k[t1, . . . , tn]

If c ∈ P ∩ k[t1, . . . , tn] then by 1.4 cr = uf for some u ∈ A. The k(t1, t2, . . . , tn)-linear
map K → K, x 7→ crx has a determinant which factors, e = dimk(t1,...,tn) K,

cre = det cr = detu det f = det u ± a
e/m
0
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The least degree relation for u shows detu ∈ A so det u ∈ A∩k(t1, . . . , tn) = k[t1, . . . , tn],
since k[t1, . . . , tn] is normal by 4.6. This shows that P∩k[t1, . . . , tn] is the unique minimal
prime over a0 in the ring k[t1, . . . , tn]. Since a polynomial ring is a unique factorization
domain the ideal P ∩ k[t1, . . . , tn] is a principal ideal generated by an irreducible polyno-
mial d ∈ P∩k[t1, . . . , tn]. After renumbering assume that d is a nonconstant polynomial in
tn, then unique factorization gives that the projections of t1, . . . , tn−1 in k[t1, . . . , tn]/(d)
generate a polynomial ring, so trdegk k[t1, . . . , tn]/(d) ≥ n − 1. Together with 5.1 this
gives the claim. �

Proposition 5.5. Let k be a field and A an affine ring over k being an integral domain
with fraction field K. Then any chain of prime ideals has the maximal length equal to the
transcendence degree of K over k.

Proof. Follows from Krull’s principal ideal theorem 5.4 by induction on trdegk K. �

6. Differentials and derivations

Definition 6.1. Let K ⊂ L be a field extension. An algebraic element t ∈ L is separable
over K if the minimal polynomial f(T ) for t has no multiple roots, that is the derivative
f ′(t) 6= 0. If every element is separable, the extension is separable . If no element outside
K is separable, the extension is purely inseparable.

Definition 6.2. Let k ⊂ K be a field extension. The space of k-differentials of K is the
K-vector space

Ωk(K) = ⊕t∈KKdt/(da, d(u + v)− du− dv, d(uv)− vdu− udv)

a ∈ k, u, v ∈ K generate the relations.
A k-linear map D : K → V to a K-vector space V is a k-derivation if

D(uv) = vD(u) + uD(v), u, v ∈ K

The k-linear map d : K → Ωk(K), t 7→ dt is the universal k-derivation on K, that
is any derivation D : K → V is the composite D = φ ◦ d for a unique K-linear map
φ : Ωk(K) → V .

Proposition 6.3. Let k ⊂ K ⊂ L be field finitely generated extensions.
(1) There is a natural isomorphism of L-vector spaces

Ωk(L)/LΩk(K) ' ΩK(L)

(2) For a finite separable extension K ⊂ L

dimL Ωk(L) = dimK Ωk(K)

(3) For a pure transcendental extension K ⊂ K(T )

dimK(T ) Ωk(K(T )) = dimK Ωk(K) + 1

(4) For a finitely generated extension K ⊂ L

dimL Ωk(L) ≥ dimK Ωk(K) + trdegK L

Proof. (2) A derivation D : K → K has a unique extension to L. �

Theorem 6.4. A finitely generated field extension k ⊂ K is finite and separable if and
only if

Ωk(K) = 0

Proof. If k ⊂ k(t) is finite and t not separable, then the minimal polynomial f(T ) has
derivative f ′(T ) = 0. There is a well defined nonzero derivation on k[T ]/(f(T )) = k(t)
given by

Dti = iti−1

In general filter the extension by adding one generator at a time. �
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Theorem 6.5. Let k ⊂ K be a finitely generated field extension of trdegk K = n. Ele-
ments t1, . . . , tn ∈ K is a transcendence basis for K over k and k(t1, . . . , tn) ⊂ K is a
finite separable extension if and only if

dt1, . . . , dtn ∈ Ωk(K)

is a K-basis.

Proof. Let t1, . . . , tn ∈ K be a transcendence basis and let k(t1, . . . , tn) ⊂ K be separa-
ble. By 6.4 dt1, . . . , dtn is a basis.
If dt1, . . . , dtn is a basis, then t1, . . . , tn is a transcendence basis.
If k(t1, . . . , tn) ⊂ K is not separable then by 6.4 Ωk(t1,...,tn)K 6= 0 and dt1, . . . , dtn will
not generate Ωk(K), giving a contradiction. �

Definition 6.6. The set of elements t1, . . . , tn in 6.5 is called a separating transcendence
basis . A such exists if and only if

dimk Ωk(K) = trdegk K

Proposition 6.7. Let k ⊂ K be a finitely generated field extension. If char(k) = 0 or k is
perfect, i.e. char(k) = p and kp = k then

dimK Ωk(K) = trdegk K

and there exists a separating transcendence basis t1, . . . , tn ∈ K for K over k.

Proof. If char(k) = p any polynomial in k[T p] is a p-th power in k[T ]. �

7. Primitive elements

Theorem 7.1 (Primitive element). Let K ⊂ K(t1, . . . , tr) be a finite field extension. If
t2, . . . , tr are separable over K, then there exists a primitive element v such that

K(v) = K(t1, . . . , tn)

Proof. The group of nonzero elements in a finite field is cyclic, so K may be taken infinite.
The case K ⊂ K(t, u), u separable suffices. Let t1, . . . , tm and u1, . . . , un be the roots of
the minimal polynomials f and g of t and u. Let s ∈ K be different from the elements

ti − tj
uk − ul

, i 6= j, k 6= l

Then v = t + su is a primitive element. u is the only common root in the polynomials

g(T ), f(v − sT ) ∈ K(v)[T ]

As u is not a multiple root, we get that the greatest common divisor of the polynomials is
T − u ∈ K(v)[T ]. Therefore t, u ∈ K(v). �

Theorem 7.2. Let k be an algebraically closed field and A an affine domain over k with
fraction field K. Then there exist a transcendence basis t1, . . . , tn ∈ A for K over k, such
that A is integral over the subring of polynomials k[t1, . . . , tn] and the field extension

k(t1, . . . , tn) ⊂ K

is a finite separable extension.

Proof. Let t1, . . . , tn ∈ A be a transcendence basis from Noether’s normalization Theorem
2.7. If g(t1, . . . , tn, tn+1) = 0 is an irreducible polynomial equation for an element in
tn+1 ∈ K, then ∂g/∂ui 6= 0 for some i else p is the characteristic of k and g is a p-power
contradicting irreducibility. Renumbering elements and using the substitutions

ui = ti − tp
m

i , m >> 0

as in the proof of Noether’s normalization, give that the extension k(t1, . . . , tn) ⊂ K is
separable after finitely many steps, by 7.1. �
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Proposition 7.3 (Lüroth). If k ⊂ K ⊂ k(t) is a subextension of trdegk K = 1, then there
is u ∈ K such that

K = k(u)

Proof. Let
f(T,U) = an(T )Un + · · ·+ a1(T )U + a0(T )

be a polynomial in k[T,U ] ∩K[U ] of least degree in U with t as root. Set

u =
ai(t)
an(t)

/∈ k, u =
g(T )
h(T )

|T = t

g(T ), h(T ) with no common factors. Then by Gauss’ lemma 4.2

h(T )g(U)− g(T )h(U) = f(T,U)q(T,U)

By degree considerations it follows that q(T,U) ∈ k and therefore deg g(T ) = n. Then
conclude by

dimk(u) k(t) ≤ n

�

8. Integral extensions of affine domains

Proposition 8.1. Let A be a normal domain with fraction field K.
(1) Let f, g ∈ K[T ] be monic. If fg ∈ A[T ] then f, g ∈ A[T ].
(2) If u in some field extension K ⊂ L is integral over A, the minimal polynomial

for u over K is in A[T ].
(3) A[T ] with fraction field K(T ) is normal.

Proof. (1) In an algebraic closure of K the roots of fg are integral over A and therefore
also the coefficients of f, g. (3) By 4.6 K[T ] is normal. For P (T ) ∈ K[T ] integral over
A[T ] use (1) on P (T ) + Tm for large m. �

Proposition 8.2. Let A be a normal affine domain with fraction field K. Assume g ∈ K
such that

P = {f ∈ A|fg ∈ A}
is a prime ideal and let k(P ) denote the fraction field of A/P . Then

trdegk k(P ) = trdegk K − 1

Proof. If gP ⊂ P then g is integral over A and P = A is not a prime ideal. So there
exists t ∈ P such that tg ∈ A−P . In the ring A[T ]/(gtT − 1) the induced ideal P = (t),
conclude by Krull’s principal ideal Theorem 5.4. �

Proposition 8.3. Let A be a normal domain with fraction field K and let B be the normal
closure of A in a finite separable field extension K ⊂ L. Then the extension A ⊂ B is
finite.

Proof. By 7.1 L = K(v), v ∈ B with monic minimal polynomial f(T ) ∈ A[T ]. Let v =
v1, . . . , vn be the roots. The square of the van der Monde determinant of these elements
d 6= 0 in A. So u1 = 1

d , u2 = v
d , . . . , un = vn−1

d give the statement. �

Theorem 8.4. Let A be a affine domain over a field k with fraction field K and let B be
the normal closure of A in a finite field extension K ⊂ L. Then the extension A ⊂ B is
finite and B is an affine domain over k.

Proof. Assume by Noether’s normalization theorem A = k[T1, . . . , Tn] is a polynomial
ring. If K ⊂ L is separable, the conclusion follows from 8.3. If u ∈ L is not separable
over K, then the minimal polynomial has form f(T pm

), where p is the characteristic of
the ground field k and upm

is separable over K. Reduce to the separable case by changing
to A = k[T p−m

1 , . . . , T p−m

n ]. �
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9. Nakayama’s lemma and Krull’s intersection theorem

Theorem 9.1 (Nakayama’s lemma). Let A ⊂ B be a ring extension and let J = {b1, . . . , bn} ⊂
B be a finite set. Assume that M ⊂ A is an ideal satisfying

MJ = AJ

(1) There is an element a ∈ M such that (1 + a)J = 0.
(2) If all elements 1 + a , a ∈ M are nonzero divisors on J , then J = {0}.

Proof. (1)
bi =

∑
j

aijbj , aij ∈ M

By Cramer’s rule
(1− ai)bi = 0 , ai ∈ M

and
1 + a = Πi(1 + ai)

(2) Cancellation give all bi = 0. �

Theorem 9.2 (Krull’s intersection theorem). Let M be an ideal in a noetherian ring A
such that the elements 1 + a, a ∈ M are nonzero divisors. Then⋂

n

Mn = 0

Proof. Let M = (u1, . . . , um). If b ∈ Mn then

b = fn(u1, . . . , um)

where fn ∈ A[T1, . . . , Tm] are homogeneous of degree n. By Hilbert’s basis theorem, 1.5
there is N such that

fN+1 = f1g1 + · · ·+ fNgN

where gn is homogeneous of degree N − n + 1. By substitution

b = ab , a ∈ M

giving b = 0. �

Proposition 9.3 (Going-up). Let A ⊂ B be a finite ring extension and let M be a maximal
ideal in A. If B is noetherian there is a maximal ideal N in B contracting M = A ∩N .

Proof. MB 6= B by 9.1. �

Proposition 9.4 (Going-down). Let A ⊂ B be a noetherian domain integral over a normal
subring. For maximal ideal N in B and a prime ideal P ⊂ A ∩ N in A there is a prime
ideal Q ⊂ N in B contracting P = A ∩Q.

Proof. If
st /∈ PB, for all s ∈ A− P, t ∈ B −N

then choose Q maximal in the set of ideals in B containing PB and not containing any st.
Let K ⊂ L be the fraction fields. Let st ∈ PB have minimal polynomial over A

(st)n + an−1(st)n−1 + · · ·+ a0 = 0

so an−1, . . . , a0 ∈ P . Since A is normal and

tn +
an−1

s
tn−1 + · · ·+ a0

sn
= 0

is the minimal polynomial for t over K it follows that an−1
s , . . . , a0

sn ∈ A. As s /∈ P this
gives tn ∈ PB. So by contradiction st /∈ PB. �



10. THE POWER SERIES RING 17

10. The power series ring

Proposition 10.1. Let k[[T1, . . . , Tn]] be the power series ring over a field k. Assume

f(0, . . . , 0, Tn) = asT
s
n + . . . , as 6= 0

(1) For any g ∈ k[[T1, . . . , Tn]] there are unique u ∈ k[[T1, . . . , Tn]] and
b0, . . . , bs−1 ∈ k[[T1, . . . , Tn−1]] such that

g = uf + (b0 + · · ·+ bs−1T
s−1
n )

(2) There are unique unit u ∈ k[[T1, . . . , Tn]] and b0, . . . , bs−1 ∈ k[[T1, . . . , Tn−1]]
such that

f = u(b0 + · · ·+ bs−1T
s−1
n + T s

n)

Proof. (1) Let M be the k[[T1, . . . , Tn−1]]-linear map

M(
∑

aiT
i
n) =

∑
as+iT

i
n

Using f = (f −M(f)T s
n) + M(f)T s

n, u must satisfy

M(g) = M(uf) = M(u(f −M(f)T s
n)) + uM(f)

The linear map
uM(f) 7→ M(u(f −M(f)T s

n)) + uM(f)
is sum of the identity and a linear map with image in the ideal (T1, . . . , Tn−1). It is invert-
ible and therefore give the claim. (2) By (1)

T s
n = u−1f − (b0 + · · ·+ bs−1T

s−1
n )

�

Proposition 10.2. The power series ring k[[T1, . . . , Tn]] over a field k is noetherian.

Proof. Assume by induction and 1.5 that k[[T1, . . . , Tn−1]][Tn] is noetherian. Let I be an
ideal. After a change of variables

U1 = T1 − T dn−1

n , . . . , Un−1 = Tn−1 − T d
n

we may assume f ∈ I satisfying the hypothesis of 10.1. Any g ∈ I has a presentation

g = uf + b0 + · · ·+ bs−1T
s−1
n

with b0 + · · ·+ bs−1T
s−1
n ∈ I . By 1.6 the intersection

I ∩ k[[T1, . . . , Tn−1]] + · · ·+ k[[T1, . . . , Tn−1]]T s−1
n

is generated by finitely many elements. These together with f generates I . �

Theorem 10.3. Let k be a field. Then the power series ring k[[T1, . . . , Tn]] is a unique
factorization domain.

Proof. Assume by induction and 4.3 that k[[T1, . . . , Tn−1]][Tn] has unique factorization.
By 10.2 there is an irreducible factorization. To see that if an irreducible element f |gh then
f |g or f |h, make a change of variables

U1 = T1 − T dn−1

n , . . . , Un−1 = Tn−1 − T d
n

such that the product fgh satisfy the hypothesis of 10.1. Then the elements f, g, h are
associated to elements in k[[T1, . . . , Tn−1]][Tn] and the result follows from the induction
hypothesis. �





CHAPTER II

Algebraic varieties

k is a fixed algebraically closed ground field.

1. Affine space

Definition 1.1. The affine n-space An is the coordinate space kn together with the set
of polynomial functions k[X1, . . . , Xn]. For a set of polynomials S in k[X1, . . . , Xn] the
subset of An of solutions

V (S) = {x ∈ An|f(x) = 0, for all f ∈ S}

is a (closed) affine set. For any subset X of An the ideal of polynomials vanishing on X
is denoted

I(X) = {f ∈ k[X1, . . . , Xn]|f(x) = 0, for all x ∈ X}
If X is an affine set, then the affine ring

k[X] = k[X1, . . . , Xn]/I(X)

is called the affine coordinate ring of X .

Proposition 1.2. Let X be an affine set. The maximal ideals in the affine coordinate ring
k[X] are exactly the ideals of the form

(X1 − x1, . . . , Xn − xn), (x1, . . . , xn) ∈ X

Proof. For any (x1, . . . , xn), I(X) ⊆ (X1−x1, . . . , Xn−xn) if and only if f(x1, . . . , xn) =
0 for all f ∈ I(X). By Hilbert’s Nullstellensatz, I.3.3 this handle all maximal ideals. �

Theorem 1.3. The ideal of an affine set V (S) is the radical of the ideal generated by S.

I(V (S)) = {f |fm is in the ideal generated by S}

Proof. I(V (S)) is its own radical, so by I.3.4 it is the intersection of all maximal ideals
containing it. By 1.2 this is exactly the maximal ideals containing S. �

Definition 1.4. Given an affine set X , an open subset is a set of the form X − Y , where
Y is an affine set in the same affine space. The open subsets give a topology on the set X
called the Zariski topology. The closed subsets are the affine subsets.

Definition 1.5. Let U be an open subset of an affine set X , a function f : U → k is regular
at u ∈ U , if there exist elements g, h ∈ k[X] such that h(u) 6= 0 and f(v) = g(v)/h(v)
for all v ∈ U − V (h). f is regular if it is regular at every u ∈ U . The regular functions
on U give a ring denoted

Γ(U)

Proposition 1.6. Let X ⊂ An be an affine set. The ring of regular functions is the affine
coordinate ring

Γ(X) = k[X]

19
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Proof. If f = gx/hx is regular at every x ∈ X , then by Hilbert’s basis theorem I.1.8 the
ideal generated by the denominators hx is finitely generated by h1, . . . , hm and fh2

1 =
g1h1, . . . , fh2

m = gmhm. Since hx(x) 6= 0, by 1.2 the ideal (h1, . . . , hm) is the whole
ring, so 1 = a1h

2
1 + · · · + amh2

m for some a1, . . . , am. This gives f = a1g1h1 + · · · +
amgmhm ∈ k[X]. �

2. Projective space

Definition 2.1. The projective n-space Pn is the coordinate space kn+1−{0}modulo the
equivalence relation

(x0, . . . , xn) ∼ (λx0, . . . , λxn), λ ∈ k − {0}

together with the set of homogeneous polynomial functions k[X0, . . . , Xn]. For a set of
homogeneous polynomials of positive degree S in k[X0, . . . , Xn] the subset of Pn of so-
lutions

V (S) = {x ∈ Pn|f(x) = 0, for all f ∈ S}

is a (closed) projective set. For any subset X of Pn the homogeneous ideal of polynomials
vanishing on X is denoted

I(X) = {f ∈ k[X0, . . . , Xn]|deg f > 0, f(x) = 0, for all x ∈ X}

If X is a projective set, then the graded affine ring

k[X] = k[X0, . . . , Xn]/I(X)

is called the homogeneous coordinate ring of X .

Proposition 2.2. Let X be a projective set. Then X is empty if and only if the ideal

I(X) = (X0, . . . , Xn)

Proof. X ⊂ Pn is empty if and only if the affine set V (I(X)) = {0} ⊂ An+1. So the
statement follows from 1.2. �

Theorem 2.3. The homogeneous ideal of a projective set V (S) is

I(V (S)) = {f |fm is in the ideal generated by S}

Proof. Follows from 1.3 applied to the affine set V (S) ⊂ An+1. �

Definition 2.4. Given a projective set X , an open subset is a set of the form X−Y , where
Y is a projective set in the same projective space. The open subsets give a topology on the
set X called the Zariski topology. The closed subsets are the projective subsets.

Definition 2.5. Let U be an open subset of an projective set X , a function f : U → k is
called regular at u ∈ U , if there exist homogeneous elements g, h ∈ k[X] of the same
degree such that h(u) 6= 0 and f(v) = g(v)/h(v) for all v ∈ U − V (h). f is regular if it
is regular at every u ∈ U . The regular functions on U give a ring denoted

Γ(U)

Proposition 2.6. Let X ⊂ Pn be a projective set. The ring of regular functions is a finite
product of copies of the field k

Γ(X) = k × · · · × k

Proof. See 3.10 below. �
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3. Varieties

Definition 3.1. An (algebraic) variety is an open subset of either an affine set or a pro-
jective set together with the Zariski topology and the rings of regular functions. An affine
variety is a full affine set and a projective variety is a full projective set.
An (algebraic) morphism of varieties is a map f : X → Y transforming by composition
regular functions on Y to regular functions on X . That is

(1) f is continuous.
(2) For an open subset of V of Y and a regular function g : V → k the composite

g ◦ f : f−1(V ) → k is a regular function.

Definition 3.2. A nonempty closed subset of a variety is irreducible if it is not the union
of two smaller closed subsets. A nonempty open subset of an irreducible variety is a dense
subset and an irreducible variety. The closure of an irreducible subvariety is irreducible.
Maximal closed irreducible subsets are called irreducible components.

Proposition 3.3. Let X be a variety.
(1) Any nonempty set of closed subsets contain minimal elements.
(2) There is a decomposition

X = X1 ∪ · · · ∪Xs

into irreducible components, unique up to order.

Proof. (1) A variety is of the form V (I) − V (J), J ⊂ I , so closed subsets correspond
to ideals between I, J in a noetherian ring. Such a set contains maximal elements giving
minimal closed subsets. (2) If there is a subset which is not a finite union of irreducible
subsets, then by (1) there is a minimal such. This is union of two smaller sets each then
being a finite union of irreducible subset giving a contradiction. If Y is in a decomposition
then for some i, j Xi ⊂ Y and Y ⊂ Xj giving uniqueness. �

Proposition 3.4. An affine or projective variety X is irreducible if and only if the ideal
I(X) is a prime ideal. The irreducible components of X correspond to the minimal prime
ideals containing I(X).

Proof. If the product of two ideals is contained in a prime ideal, then one of the ideals is
contained in the prime ideal. This fact gives the statement. �

Proposition 3.5. Let X be a variety. Morphisms X → A1 are exactly the regular functions
on X .

Proof. Let f ∈ Γ(X), it suffices to show that the subset f−1(0) is closed. If f(x) =
g(x)/h(x) = 0 then V (g) ∩ X is a closed subset, and the intersection of all these is
f−1(0). �

Proposition 3.6. Assume Y ⊆ An. A morphism f : X → Y is given by regular functions
f1, . . . , fn ∈ Γ(X)

f(x) = (f1(x), . . . , fn(x))
If Y is an affine variety, this gives a ring homomorphism

f∗ : k[Y ] → Γ(X), Yj 7→ fj

and f 7→ f∗ maps morphisms bijectively onto ring homomorphisms.

Proof. Follows from 3.5 and 1.6. �

Proposition 3.7. Let Ui = Pn − V (Xi). The map

Ui → An, (x0, . . . , xi, . . . , xn) 7→ (
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi
)
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is an isomorphism.
U0, . . . , Un give an open covering of the projective space Pn by copies of the affine space
An.

Proof. The map is clearly bijective transforming closed subsets to closed subsets, so it is
a homeomorphism. If i = 0, a fraction of polynomials g(x1, . . . , xn)/h(x1, . . . , xn) with
deg g = e, deg h = f give a fraction of homogeneous polynomials

xe+f
0 g(x1/x0, . . . , xn/x0)

xe+f
0 h(x1/x0, . . . , xn/x0)

of the same degree e + f . So the map is an isomorphism. �

Proposition 3.8. A variety is isomorphic to an open subset of a projective set.

Proof. By 3.7 an affine set X ⊂ An is isomorphic to an open subset of the closure of the
image in Pn. �

Proposition 3.9. Assume Y ⊆ Pn. A morphism f : X → Y is a map given by an open
covering U1, . . . , Us of X and regular functions fi0, . . . , fin ∈ Γ(Ui)

f(x) = (fi0(x), . . . , fin(x)), x ∈ Ui

satisfying
fik(x)fjl(x)− fil(x)fjk(x), x ∈ Ui ∩ Uj

Proof. 3.6 and 3.7 and two homogeneous coordinates (fi0, . . . , fin) and (fj0, . . . , fjn) are
proportional if and only if they satisfy the relation in the statement. �

Proposition 3.10. Let X ⊂ Pn be an irreducible projective variety. A regular function is
constant, that is the ring of regular functions Γ(X) = k.

Proof. Let X have homogeneous coordinate ring k[X] = k[X0, . . . , Xn]/I and let f :
X → k be a regular function. By 3.7 and 3.5 there are homogeneous polynomials gi such
that f = gi/Xdi

i on X ∩ Ui. It follows for big d that the homogeneous part f k[X]d ⊂
k[X]d and therefore fm k[X]d ⊂ k[X]d for all m. (x, y) = (x, f(x)) are solutions to a
set of equations

Y mXd
i − gim(X0, . . . , Xn) = 0

The space of homogeneous forms of degree d is finite dimensional,

gim = a0gi0 + · · ·+ am−1gi m−1, aj ∈ k

giving
Y mXd

i = (a0 + · · ·+ am−1Y
m−1)Xd

i

Now use that a polynomial has only finitely many roots and conclude that f is constant. �

Proposition 3.11. Let X ⊆ An be an affine variety and f a regular function. The open
subset Xf = X − V (f) is isomorphic to the affine variety V (I, fXn+1 − 1) ⊆ An+1 by
the morphism

(x1, . . . , xn) 7→ (x1, . . . , xn, 1/f(x1, . . . , xn))

Proof. By 3.5 this is a morphism and the projection (x1 . . . , xn+1) 7→ (x1 . . . , xn) is the
inverse. �

Proposition 3.12. A variety has a basis for the Zariski topology consisting of open subsets
isomorphic to affine sets.

Proof. 3.11 gives the affine case and 3.7 makes the reduction to the affine case. �
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4. Product of varieties

Proposition 4.1. The Segre map

Pm × Pn → Pmn+m+n

((x0, . . . , xm), (y0, . . . , yn)) 7→ (zij) = (x0y0, . . . , x0yn, . . . , xmyn)
is injective. The image is the projective variety

V ({zikzjl − zilzjk|i 6= j, k 6= l})
A subset Z ⊂ Pm × Pn maps to a closed subset of Pmn+m+n if it is the set of solutions to
polynomials F (X0, . . . , Xm, Y0, . . . , Yn) homogeneous in the Xi’s and Yj’s.

Proof. The matrix identityx0y0 . . . x0yn

...
xmy0 . . . xmyn

 =

x0

...
xm

 (
y0 . . . yn

)
shows that the lefthanded side has rank 1. The image is given by equations

zikzjl − zilzjk = 0

The projection of a matrix onto a nonzero column is the inverse map. If the degree in Xi’s
is d and Yj’s is e and e > d, then the polynomial F is replaced by the m+1 homogeneous
polynomials

FXe−d
0 , . . . , FXe−d

m

of degree e in both set of variables and therefore coming from homogeneous polynomials
in the variables Zij = XiYj . �

Definition 4.2. Let varieties X, Y be given as open subsets of projective sets in Pm, Pn.
By the image of the Segre map a variety in Pmn+m+n is defined and called the product
denoted by X × Y . Am × An is isomorphic to Am+n. If X, Y are affine then X × Y is
affine. If X, Y are projective then X × Y is projective.

Proposition 4.3. The product X × Y satisfy
(1) The projections p : X × Y → X, q : X × Y → Y are morphisms.
(2) For any pair of morphisms g : Z → X, h : Z → Y there exist a unique

morphism f : Z → X × Y such that g = p ◦ f, h = q ◦ h.

Proof. To prove the maps being morphisms the varieties X, Y can be assumed affine. The
result follows from 3.6. �

Proposition 4.4. The product of irreducible varieties is an irreducible variety.

Proof. If X × Y = Z1 ∪ Z2 then the sets

Xi = {x ∈ X|x× Y ⊂ Zi}
give a decomposition X = X1 ∪X2. The set

Xi =
⋂

y∈Y

{x|(x, y) ∈ Zi}

is closed. �

Proposition 4.5. The graph of a morphism f : X → Y is a closed subset of X × Y .

Proof. It suffices to prove that the diagonal An ⊂ An × An is closed. This is given by
linear equations. �

Theorem 4.6. Let X be a projective variety and Y any variety. For any closed subset
Z ⊂ X × Y the projection p(Z) ⊂ Y is a closed subset.
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Proof. It is enough to treat the case p : Pn × Am → Am. A closed subset Z is the zero’s
of a finite number of polynomials

fi(X0, . . . , Xn, Y1, . . . , Ym) = 0, i = 1, . . . , r

homogeneous in the Xj’s of degree di. For y ∈ Am

y /∈ p(Z) if and only if (X0, . . . , Xn)s ⊂ (fi(X, y)), s >> 0

The linear map

⊕ik[X]s−di → k[X]s, (gi(X)) →
∑

i

gi(X)fi(X, y)

is surjective when a maximal minor is nonzero, so the set of y /∈ p(Z) is open. �

Proposition 4.7.
(1) The image of a projective variety is a projective variety.
(2) A morphism from an irreducible projective variety to an affine variety is constant.
(3) A variety which is both affine and projective is a finite set of points.

Proof. (1) 4.5, 4.6. (2) A coordinate function has closed irreducible image in A1 and it
cannot be surjective because A1 is open in P1 then contradicting 4.6. �

Proposition 4.8. The Veronese morphism of degree d is the map sending homogeneous
coordinates to monomials of degree d

Pn → P(n+d
d )−1

(x0, . . . , xn) 7→ (. . . , yi0...in
, . . . ) = (xd

0, x
d−1
0 x1, . . . , x

d
n)

This is an isomorphism onto the image which is a closed subvariety.
If F ∈ k[X0, . . . , Xn] is a nonzero homogeneous form, then the open subset Pn − V (F )
is mapped isomorphically to an affine subvariety of A(n+d

d )−1.

Proof. Projecting onto the next n + 1 coordinates starting at a pure d-power

(. . . , yi0...in , . . . ) 7→ (x0, . . . , xn) = (y...d..., . . . , y...d−1 0...0 1...)

is an inverse. By 4.7 the map transports closed sets to closed sets so it is an isomorphism.
The image of V (F ) is represented by the intersection of the hyperplane given by the linear
form with coefficients from the monomials in F , so the complement is in a complement of
a hyperplane which is affine. �

5. Rational functions

Definition 5.1. Let X be an irreducible variety. Define an equivalence relation on the set
of all regular functions by

(f : U → k) ∼ (g : V → k) if f = g on U ∩ V

The equivalence classes give a field extension k(X) of k called the field of rational func-
tions. It depends only on a nonempty open subset.

Proposition 5.2. Let X be an irreducible affine variety. The field of rational functions
k(X) is the field of fractions of the ring of regular functions k[X].

Proof. Follows from 1.6. �

Proposition 5.3. Let X be an irreducible projective variety. The field of rational functions
k(X) is the subfield of fractions f

g , f, g homogeneous of the same degree. For any nonzero
form t of degree 1 the ring k(X)[t, t−1] is the ring consisting of all homogeneous fractions
of any degree.

Proof. Assume by coordinate change t = X0. �
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Proposition 5.4. For an irreducible variety X the field of rational functions k(X) is a
finitely generated field extension of k.

Proof. As the field of rational functions only depend on an open subset, this follows from
5.2. �

6. Dimension of varieties

Definition 6.1. The dimension of an irreducible variety X is

dim X = trdegk k(X)

A nonempty open subset U of X has dimension dim U = dim X .

Proposition 6.2. If Y ⊂ X is an irreducible closed proper subset of an irreducible variety,
then

dim Y < dim X

Proof. The varieties can be assumed affine. Then this follows from I.5.1. �

Theorem 6.3. If f ∈ Γ(X) is a nonzero regular function on an irreducible variety and Y
is an irreducible component of the hypersurface V (f), then

dim Y = dim X − 1

Proof. I.5.4. �

Proposition 6.4. The length of a maximal chain of irreducible closed subsets of an irre-
ducible variety X is dim X , i.e.

∅ 6= Y1 ⊂ · · · ⊂ Ydim X = X

Yi irreducible closed and the chain cannot be refined.

Proof. Let U ⊂ X be an open affine and f ∈ k[U ] not constant. Then set Ydim X−1 to be
a component of the closure of V (f) in X . By 6.3 dim Ydim X−1 = dim X − 1. Finish by
induction. �

Proposition 6.5. If f1, . . . , fr ∈ Γ(X) and Y is an irreducible component of V (f1, . . . , fr),
then

dim Y ≥ dim X − r

Proof. Let Z be a component of V (f1, . . . , fr−1) containing Y . If fr is nonzero on Z,
dim Y = dim Z − 1, 6.3. �

Proposition 6.6. Let X ⊂ Pn be an irreducible projective variety and let F1, . . . , Fr be
homogeneous forms. If r ≤ dim X , then

V (F1, . . . , Fr) ∩X 6= ∅
and for Y an irreducible component of V (F1, . . . , Fr) ∩X

dim Y ≥ dim X − r

Proof. In An+1, 0 ∈ V ((F1, . . . , Fr) + I(X)) so there is a nonempty component Z of
dimension

dim Z ≥ dim X + 1− r ≥ 1
giving V (F1, . . . , Fr) ∩X 6= ∅. �

Proposition 6.7. Let X ⊂ Pn be an irreducible projective variety. Then there are L0, . . . , Ldim X

linear homogeneous forms such that

V (L0, . . . , Ldim X) ∩X = ∅

Proof. 6.6. �
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Proposition 6.8.
(1) Let Y ⊂ X ⊂ An be irreducible closed subvarieties with r = dim X − dim Y .

Then there exist f1, . . . , fr ∈ Γ(X) such that and Y is an irreducible component
of V (f1, . . . , fr) ∩X .

(2) Let Y ⊂ X ⊂ Pn be irreducible closed subvarieties with r = dim X − dim Y .
Then there exist F1, . . . , Fr homogeneous forms such that and Y is an irreducible
component of V (F1, . . . , Fr) ∩X .

Proof. f1 ∈ I(Y )− I(X). Let Z1, . . . , Zs be the components of
V (f1, . . . , fi−1)∩X , fi ∈ I(Y )− I(Z1)∪ · · · ∪ I(Zs), then dim Z = dim X − i for any
component Z of V (f1, . . . , fi). �

Proposition 6.9. Let X, Y be irreducible. Then

dim X × Y = dim X + dim Y

Proof. A combined chain of irreducible give dim X × Y ≥ dim X + dimY . Assume
X, Y affine and by 6.8 there are
f1, . . . , fdim X ∈ k[X] such that {x} is a component of V (f1, . . . , fdim X). By 6.5
dim Y ≥ dim X × Y − dim X . �

Proposition 6.10.
(1) Let X ⊂ An be irreducible closed subvariety with dim X = n − 1. Then there

exists a polynomial f such that

X = V (f), I(X) = (f)

(2) Let X ⊂ Pn be irreducible closed subvariety with dim X = n − 1. Then there
exists a homogeneous form F such that

X = V (F ), I(X) = (F )

Proof. Unique factorization, I.4.4, gives that prime ideals minimal over a polynomial are
principal. �

Proposition 6.11.
(1) Let X, Y ⊂ An be irreducible closed subvarieties. If Z is an irreducible compo-

nent of X ∩ Y , then

dim Z ≥ dim X + dim Y − n

(2) Let X, Y ⊂ Pn be irreducible closed subvarieties. If Z is an irreducible compo-
nent of X ∩ Y , then

dim Z ≥ dim X + dim Y − n

If dim X + dim Y ≥ n then X ∩ Y 6= ∅.

Proof. (1) X ∩ Y = X × Y ∩ (diagonal inAn × An), X ∩ Y = X × Y ∩ V (X1 −
Y1, . . . , xn − Yn) and 6.5. (2) There is a component W of the nonempty closed subset
V (I(X) + I(Y )) ⊂ An+1. By (1) dim W ≥ dim X + 1 + dim Y + 1 − (n + 1) ≥ 1
giving X ∩ Y 6= ∅. �

7. Finite morphisms

Definition 7.1. A morphism f : X → Y is called finite if for every y ∈ Y there is
an open affine subset y ∈ V ⊂ Y such that f−1(V ) is affine and the ring extension
f∗(k[V ]) ⊂ k[f−1(V )] is finite.

Proposition 7.2. Let f : X → Y be a finite morphism. If Y is affine, then X is affine and
the extension f∗(k[Y ]) ⊂ k[X] is finite.
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Proof. Let gj ∈ k[Y ] be a finite set of elements such that ∪Ygj
= Y , Xgj◦f are affine and

f∗(k[Ygj
]) ⊂ k[Xgj◦f ] are integral. Γ(X) →

∏
k[Xgj◦f ] is injective so Γ(X) is integral

over f∗(K[Y ]) and becomes an affine ring. The affine variety with coordinate ring Γ(X)
is isomorphic to X . �

Proposition 7.3. Let f : X → Y be a finite morphism.

(1) f−1(y) is a finite set for each y ∈ Y .
(2) Let Z ⊂ X be a closed subset, then f(Z) ⊂ Y is a closed subset.

Proof. Assume X, Y affine. (1) f−1(y) corresponds to the maximal ideals in the ring
k[X]/f∗(my)k[X] which is has finite dimension over k. (2) Assume Z = X . If y ∈
Y − f(X) then f∗(my)k[X] = k[X] so by Nakayama’s lemma, I.9.1 there is g ∈ k[Y ]
with g(y) 6= 0 and Yg ∩ f(X) = ∅. �

Proposition 7.4. Let X be an irreducible variety of dimension n.

(1) If X is affine, then there is a separable surjective finite morphism

f : X → An

(2) If X is projective, then there is a (separable??) surjective finite morphism

f : X → Pn

Proof. I.7.2 and 7.3. �

Proposition 7.5. Let X ⊂ Pn be an irreducible projective variety and L0, . . . , Ldim X

linear homogeneous forms such that V (L0, . . . , Ldim X) ∩X = ∅, then

X → Pdim X , x 7→ (L0(x), . . . , Ldim X(x))

is a finite surjective morphism.

Proof. 6.7. �

Definition 7.6. A morphism f : X → Y is called dominant if the image is dense f(X) =
Y .

Proposition 7.7. Let f : X → Y be a dominant morphism of irreducible varieties.

(1) There is a field extension f∗(k(Y )) ⊂ k(X).
(2) dim X ≥ dim Y .
(3) f(X) contains a nonempty open subset of Y .

Proof. (3) Assume X, Y affine, r = dim X − dim Y and choose by Noether’s normal-
ization theorem, I.2.7, t1, . . . , tr ∈ k[X] algebraically independent over f∗(k(Y )). Clear-
ing denominators in the minimal polynomials for a finite set of generators of k[X] over
f∗(k[Y ]) gives a nonconstant g ∈ k[Y ] such that k[Xg◦f ] is integral over f∗(k[Yg])[t1, . . . , tr].
This gives a finite morphism Xg◦f → Yg × Ar which by 7.3 is surjective, so Yg ⊂
f(X). �

Theorem 7.8. Let f : X → Y be a dominant morphism of irreducible varieties.

(1) Let W ⊂ Y be a closed irreducible subset of Y and let Z ⊂ X be an irreducible
component of f−1(W ) with f(Z) = W , then

dim Z ≥ dim W + (dim X − dim Y )

(2) There is a nonempty subset V ⊂ f(X) open in Y such that for W,Z as in (1)
satisfying W ∩ V 6= ∅, Z ∩ f−1(V ) 6= ∅

dim Z = dim W + (dim X − dim Y )
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Proof. Assume X, Y affine. (1) W is a component of V (f1, . . . , fdim Y−dim W ) by 6.8, so

dim Z ≥ dim X − (dim Y − dim W )

(2) By the proof of 7.7 there is an open subset V ⊂ Y and finite surjective morphism
f−1(V ) → V ×Adim X−dim Y . It follows that dim Z ≤ dim W + (dimX − dim Y ). �

8. Fibre of morphisms

Proposition 8.1. Let f : X → Y be a dominant morphism of irreducible varieties.
(1) Let y ∈ Y and let Z ⊂ X be a irreducible component of the fibre f−1(y), then

dim Z ≥ dim X − dim Y

(2) There is a nonempty subset V ⊂ f(X) open in Y such that for each y ∈ V and
Z as in (1)

dim Z = dim X − dim Y

Proof. 7.8. �

Proposition 8.2. Let f : X → Y be a dominant morphism of irreducible varieties. For
every nonnegative integer n the set

{x ∈ X|dim Z ≥ n for some component Z of f−1(f(x))}
is a closed subset of X .

Proof. 8.1 gives an open subset V ⊂ Y such that for x ∈ X − f−1(V ) all components of
f−1(f(x)) have dimension dim X − dim Y . Induction on dim Y give the statement for
f| : Z → W , where W is a component of Y − V and Z a component of f−1(W ). �

Proposition 8.3. Let f : X → Y be a surjective morphism f(X) = Y of projective
varieties with Y and f−1(y), y ∈ Y all irreducible. If the dimension dim f−1(y) is
constant then X is irreducible.

Proof. There is a component Z of X such that f(Z) = Y . Now use 8.2 to get X = Z. �

Proposition 8.4. Let f : X × Y → Z be a morphism. Assume X is irreducible projective
and Y irreducible. If there exists y′ ∈ Y such that X × {y′} ⊂ f−1(f(y′)) then

X × {y} ⊂ f−1(f(y)), y ∈ Y

Proof. X is projective so the projection of the graph of f onto Y ×Z is a closed subvariety
W by 4.6. Let x′ ∈ X be fixed. The projection p : W → Y is surjective with fibre
p−1(y′) = (y′, f(x′, y′)) so dim W = dim Y by 8.1. The graph of Y → Z, y 7→ f(x′, y)
is a closed subvariety of W isomorphic to Y and thereby equal to W giving f(x, y) =
f(x′, y). �

Definition 8.5. Let Ui be open and Zi closed subsets of X. The finite union

U1 ∩ Z1 ∪ · · · ∪ Ur ∩ Zr

is called constructible.

Proposition 8.6 (Chevalley). Let f : X → Y be a morphism and W ⊂ X a constructible
subset. The image f(W ) ⊂ Y is constructible.

Proof. Assume W = X and by induction on dim Y assume f dominant. By 7.8 reduce to
a component of Y − V and use induction. �

Proposition 8.7. Let X ⊂ Y be a constructible subset. The following conditions are
equivalent.

(1) X ⊂ Y is open.
(2) If W ⊂ Y is an irreducible closed subset with X ∩W 6= ∅, then X ∩W = W .
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Proof. 8.6. �

Proposition 8.8. Let f : X → Y be a morphism. The following conditions are equivalent.
(1) For any open U ⊂ X the image f(U) ⊂ Y is open.
(1) If W ⊂ Y is an irreducible closed subset with f(X)∩W 6= ∅ and Z ⊂ f−1(W )

an irreducible component, then f(Z) = W .

Proof. 8.6. �

Proposition 8.9. Let U ⊂ X × Y be an open subset. The projections p(U) ⊂ X , q(U) ⊂
Y are open.

Proof. 8.6. �

Definition 8.10. A dominant morphism f : X → Y with f∗(k(Y )) = k(X) is called a
birational isomorphism.

Proposition 8.11. Let f : X → Y be a birational isomorphism. There is a nonempty open
subset V ⊂ Y such that f : f−1(V ) → V is an isomorphism.

Proof. Assume Y affine and let U ⊂ X be an open affine. If Z is a component of X − U

then dim f(Z) < dim Y , so there is h ∈ k[Y ] such that f−1(Yg) ⊂ U , so assume also X
affine. Clearing denominators in a set of generators of k[X] over k[Y ] gives the result. �

9. Local ring and tangent space

Definition 9.1. Let X be a variety. For x ∈ X the local ring OX,x (or Ox) at x is defined
to be the ring of equivalence classes of regular functions at x

(f : U → k) ∼ (g : V → k) if f|W = g|W

where W ⊂ U ∩ V are open sets containing x.
The local ring depends only on an open neighborhood of the point.

Proposition 9.2.
(1) For affine space

OAn,x = {f

g
∈ k(X1, . . . , Xn)|g(x) 6= 0}

(2) If X ⊂ An is an affine variety, then

OX,x = OAn,x/I(X)OAn,x

(3) OX,x is a noetherian ring with exactly one maximal ideal mx and

OX,x/mx ' k

Proof. (1) A fraction of fractions is a fraction. (2) The righthand side maps surjectively
to the lefthanded side. If a fraction f/g gives the 0 function, it is 0 in an open affine set
X − V (h) so hf = 0 on X , that is f/g ∈ IOAn,x. (3) f : U → k is in mx if f(x) = 0
and if f(x) 6= 0 it is invertible in OX,x. �

Proposition 9.3. The local ring Ox is an integral domain if and only if x ∈ X is lying on
exactly one irreducible component.

Proof. Let X = X1 ∪ · · · ∪Xs be the irreducible components.

U = X1 −X2 ∪ · · · ∪Xs

is an open irreducible subset of X . If x ∈ U then Ox is an integral domain. If x ∈ X1∩X2

and for simplicity s = 2 choose fi ∈ I(Xi) − I(Xj). Then f1, f2 6= 0 and f1f2 = 0 in
Ox. �

Proposition 9.4. Assume X to be irreducible.
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(1) OX,x is an integral domain and the field of fractions is the field of rational func-
tions k(X).

(2) If U ⊂ X is an open subset, then

Γ(U) =
⋂

x∈U

OX,x

Proof. (2) An element of the intersection give for every x ∈ U a value f(x) ∈ k. �

Definition 9.5. Let X = V (I) ⊂ An be an affine set. For x ∈ X and f ∈ I the differential

df =
n∑
1

∂f

∂Xi
(x)(Xi − xi)

is a linear polynomial in k[X1, . . . , Xn]. The (embedded) tangent space to X at x is the
affine linear subspace

TxX = V ({df |f ∈ I})
Let X = V (I) ⊂ Pn be a projective set. For x ∈ X and F ∈ I homogeneous the
differential

dF =
n∑
0

∂f

∂Xi
(x)Xi

is a homogeneous polynomial in k[X0, . . . , Xn]. The projective (embedded) tangent
space to X at x is the projective linear subspace

TxX = V ({dF |F ∈ I})

By Euler’s formula
∑n

0
∂f

∂Xi
Xi = deg(F ) F it follows that the restriction of the projective

tangent space to an open affine coordinate space in Pn is identified with the affine tangent
space.

Proposition 9.6. Let mx ⊂ OX,x be the maximal ideal in the local ring at x. The tangent
space is the k-linear dual to the vector space mx/m2

x

Proof. Let h ∈ mx, y ∈ TxX then dh(y) ∈ k gives a nondegenerate pairing

mx/m2
x × TxX → k

Assume X ⊂ An and x = 0 so mx is generated by X1, . . . , Xn. If dh(y) = 0 for all y
then h is represented by a polynomial with zero constant and linear term, so h ∈ m2

x. �

Definition 9.7. Let X be a variety, the tangent space TxX is independent of an open
affine neighborhood and identified with the linear dual of mx/m2

x.
Let f : X → Y be a morphism of varieties. For y = f(x) transport of regular functions
give a ring homomorphism

f∗ : OY,y → OX,x, f∗(my) ⊂ mx

and an induced map linear map

f∗(x) : my/m2
y → mx/m2

x

The linear dual map
df(x) : TxX → TyY

is called the differential at x.
These constructions respect composition, so an isomorphism give isomorphic tangent spaces.
If p : X × Y → X, q : X × Y → Y are the projections, then

(dp(x, y), dq(x, y)) : T(x,y)X × Y → TxX × TyY

is an isomorphism.
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Proposition 9.8. Let x ∈ X, y ∈ Y be points on varieties. If φ : OY,y → OX,x, φ(my) ⊂
mx is a ring homomorphism, then there are open neighborhoods x ∈ U ⊂ X, y ∈ V ⊂ Y
and a morphism f : U → V such that f∗ = φ : OY,y → OX,x. If φ is an isomorphism,
then f also can be chosen to be an isomorphism.

Proof. Assume X ⊂ Am, Y ⊂ An affine and x, y the 0 points. Then

φ(Tj) =
m∑
1

fi

gi
Si, fi, gi ∈ k[X]

Let U = X − V (g1 . . . gm). �

Proposition 9.9. Let f : X → Y be an injective morphism such that the differential df(x)
is injective for all points x ∈ X . If one of the following conditions are satisfied

(1) X is projective.
(2) f is finite.

then f : X → f(X) is an isomorphism.

Proof. Let y = f(x)
f∗(x) : my/m2

y → mx/m2
x

is surjective, so by Nakayama’s lemma I.9.1

f∗ : OY,y → OX,x

is surjective for all x. Assume X, Y affine and let J be the kernel of f∗ : k[Y ] → k[X].
This gives k[Y ]/J ' k[X]. �

Proposition 9.10. Let X be irreducible of dim X = n. Then there is a nonempty open
subset U ⊆ X which is isomorphic to an open subset of an irreducible hypersurface in
An+1.

Proof. Assume X affine and find I.7.2 regular functions f1, . . . , fn such that k[X] is inte-
gral over the polynomial ring k[f1, . . . , fn] and k(f1, . . . , fn) ⊂ k(X) is separable. The
rest follows from the primitive element theorem I.7.1. �

Proposition 9.11. Let X be an irreducible variety. Then for x ∈ X

dim TxX ≥ dim X

Proof. 3.12 reduces to an affine variety X = V (f1, . . . , fm) ⊂ An. The subset of points
x where

dim TxX = min{dim TzX|z ∈ X}
is given by nonvanishing minors of the Jacobi matrix

(
∂fi/∂Xj

)
and is therefore open.

By 9.10 it is assumed m = 1, so the result follows from 6.3. �

10. Nonsingular varieties

Definition 10.1. An irreducible variety X is nonsingular,(smooth, regular) at x if dim TxX =
dim X else singular, (nonsmooth,nonregular). If all points are nonsingular then X is
nonsingular.
x ∈ X, y ∈ Y are nonsingular if and only if (x, y) ∈ X × Y is nonsingular.

Theorem 10.2. Let X be an irreducible variety.

(1) The set of nonsingular points is a nonempty open subset.
(2) If Y is an irreducible component of the singular points in X , then

dim Y < dim X
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Proof. (1) By 9.10 it is assumed that X = V (f) for some f ∈ k[X1, . . . , Xn+1]. Then
in characteristic 0 some ∂f/∂Xi 6= 0. In characteristic p if all ∂f/∂Xi = 0 there is
g, gpm

= f with some ∂g/∂Xi 6= 0. In both cases the set of nonsingular points is
nonempty. (2) 6.2. �

Theorem 10.3. Let x ∈ X be a nonsingular point in an irreducible variety. The local ring
at x, Ox is a unique factorization domain.

Proof. Let the regular functions in an open affine neighborhood of x, t1, . . . , tn give a basis
over k of the space mx/m2

x. The Taylor-expansion define compatible ring isomorphisms

Ox/ms
x ' k[t1, . . . , tn]/(t1, . . . , tn)s

giving an identification
Ox ⊂ k[[t1, . . . , tn]]

by Krull’s intersection Theorem, I.9.2.
If f, g ∈ Ox is such that the fraction g

f ∈ k[[t1, . . . , tn]] then by Krull’s theorem

gOx =
⋂
x

gOx + mn
x

so g
f ∈ Ox.

By 9.2 it remains to show that if an irreducible element f |gh in Ox then f |g or f |h. By
I.10.3 there is a factorization g = fg′ in k[[t1, . . . , tn]] giving a factorization in Ox by the
result above. �

Proposition 10.4. Let X be a nonsingular irreducible variety and let Y ⊂ X be an irre-
ducible closed subvariety. If dim Y = dim X − 1, then for any y ∈ Y there is an open
affine U ⊂ X, y ∈ U and f ∈ k[U ] such that I(Y ∩ U) = (f) in k[U ].

Proof. 10.3 give that a prime ideal in OX,y minimal over a nonzero element is principal.
�

Proposition 10.5. Let X be a nonsingular irreducible variety and let Y be a projective
variety. Assume f : U → Y is a morphism defined on a maximal open subset U ⊂ X .
Then for a component Z of X − U

dim Z ≤ dim X − 2

Proof. If dim Z = dim X − 1 then by 10.4 there is an open affine neighborhood U of any
z ∈ Z such that I(U ∩ Z) = (h). If Y ⊂ Pn then the morphism hf extends f . �

Proposition 10.6. Let X be a nonsingular irreducible projective variety. If dim X = n
then X is isomorphic to a closed subvariety of P2n+1.

Proof. Let X ⊂ PN and consider the closed subset X1 ⊂ PN consisting of all projective
lines through two points of X and the closed subset X2 ⊂ PN consisting of all embedded
projective tangent lines through points of X . Then dim X1 ≤ 2n + 1 and dim X2 ≤ 2n.
If N > 2n + 1 then y ∈ PN − (X1 ∪X2) give a projection X → PN−1 which by 9.9 is
an isomorphism onto a closed subvariety. �

Proposition 10.7. Let x ∈ X be a nonsingular point of an irreducible variety of dimension
n. Then there is an open neighborhood U of x which is isomorphic to an open subset of a
closed hypersurface in An+1.

Proof. ??? Local version of the proof of 10.6. �

Proposition 10.8. Let X be an nonsingular irreducible variety, and let Y,Z ⊂ X be
irreducible closed subvarieties. If W is an irreducible component of Y ∩ Z, then

dim W ≥ dim Y + dim Z − dim X

Proof. Y ∩ Z = Y × Z ∩ diagonal in X and 6.5. �
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11. Normal varieties

Definition 11.1. An irreducible variety X is normal at x if the local ring Ox is normal. If
normality hold at all points then X is normal.
If x ∈ X, y ∈ Y are normal then (x, y) ∈ X × Y is normal.

Proposition 11.2. A nonsingular variety is normal.

Proof. 10.3. �

Proposition 11.3. Let X be a normal irreducible variety and let Y ⊂ X be a irreducible
closed subvariety. If dim Y = dim X−1, then there is an open affine U ⊂ X, Y ∩U 6= ∅
and f ∈ k[U ] such that I(Y ∩ U) = (f) in k[U ].

Proof. Assume X affine and I(Y ) ⊂ k[X] the unique prime ideal minimal over g 6= 0.
Then there is a minimal n such that I(Y )n ⊂ (g). Choose h ∈ I(Y )n−1 − (g), then
hI(Y ) ⊂ (g). If hI(Y ) ⊂ gI(Y ), then h

g is integral over the normal domain k[X], so the
contradiction h ∈ (g). Therefore choose f ∈ I(Y ) such that hf ∈ hI(Y ) − gI(Y ) then
hf = gs, s ∈ k[X]− I(Y ). In the ring k[X][s−1], I(Y ) = (f). �

Proposition 11.4. Let X be a normal irreducible variety and let Y be a component of the
closed set of singular points in X . Then

dim Y ≤ dim X − 2

Proof. If dim Y = dim X − 1, I(Y ) = (f) by 11.3. By 10.2 there is y ∈ Y such that
dim TyY = dim Y . Now mY,y = mX,y/fOX,y so dim TyX ≤ dim Y + 1 = dim X and
y is nonsingular on X . �

Proposition 11.5. Let X be a normal irreducible variety and let f : U → k be a regular
function on an open subset U ⊂ X . If for every component Z of X − U

dim Z ≤ dim X − 2

then f is the restriction to U of a regular function on X .

Proof. Assume X affine and f /∈ k[X]. k[X] is noetherian so choose the ideal P = {g ∈
k[X]|ghf ∈ k[X]} maximal in the family over h ∈ k[X], hf /∈ k[X]. P is a prime ideal
and by construction f is not regular at x ∈ X − V (P ). V (P ) is a component of X − U
and by I.8.2 dim V (P ) = dim X − 1. �

Proposition 11.6. Let f : X → Y be a finite surjective morphism of irreducible varieties.
(1) If Y is normal and f(x) ∈ W ⊂ Y is closed irreducible, then there is an

irreducible component x ∈ Z ⊂ f−1(W ) such that f(Z) = W .
(2) If Y is normal then for every open subset U ⊂ X , f(U) is open in Y . For each

y ∈ Y the number of points in the fibre

|f−1(y)| ≤ dimk(Y ) k(X)

(3) If the extension f∗(k(Y )) ⊂ k(X) is separable then there is a nonempty open
subset V of Y such that for each y ∈ Y the number of points in the fibre

|f−1(y)| = dimk(Y ) k(X)

Proof. Assume X, Y affine. (2) Let g ∈ k[X], y ∈ f(Xg). The minimal polynomial for
g over f∗(K(Y )) come from T r + T r−1a1 + · · · + ar ∈ k[Y ][T ] since the ring k[Y ] is
normal, 10.3. The morphism X → Y × A, x 7→ (f(x), g(x)) is then finite and therefore
surjective by 7.3. If ai(y) 6= 0 then Yai

⊂ f(Xg) and f(Xg) is open. If g have distinct
values at points in f−1(y), then T r +T r−1a1(y)+ · · ·+ar(y) has at least |f−1(y)| roots,

|f−1(y)| ≤ r ≤ dimk(Y ) k(X)
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(3) By 10.2 assume Y nonsingular and k[X] is generated over f∗(k[Y ]) by a separable
polynomial. In that case

|f−1(y)| = dimk(Y ) k(X)
for all y ∈ Y . �

Definition 11.7. Let Y be an irreducible variety and k(Y ) ⊂ K a finite field extension. A
normalization of Y in K is a normal irreducible variety X and a finite surjective morphism
π : X → Y such that the extension π∗(k(Y ) ⊂ k(X) is isomorphic to the given extension.
If k(Y ) = K this is the normalization.

Proposition 11.8. Let Y be an irreducible variety and k(Y ) ⊂ K a finite field extension.
(1) There is a up to isomorphism unique normalization π : X → Y of Y in K.
(2) If Y is affine, then X is affine.
(3) If Y is projective, then X is projective.

Proof. (2) k[X] is the normalization of k[Y ] in K I.8.4. (3) Let A be the integral closure of
k[Y ] in K(t) for some form t of degree one, 5.3. A is a graded ring finitely generated over
k. There is a d such that the subring A0⊕Ad⊕A2d⊕. . . is generated by elements of ’degree
one’. The projective variety with this homogeneous coordinate ring is the normalization.

�

Proposition 11.9. Let Y an irreducible variety. The set of points where Y is normal is a
nonempty open subset.

Proof. The normalization f : X → Y gives the open subset y ∈ V ⊂ Y where |f−1(y)| =
1. �

Proposition 11.10. Let X be a normal irreducible projective variety. If dim X = n then
X is isomorphic to the normalization of a closed hypersurface V (F ) ⊂ Pn+1.

Proof. Assume X ⊂ PN and let L0, . . . , Ln+1 be linear forms such that X∩V (L0, . . . , Ln+1) =
∅, then the projection X → Pn+1 is finite with image V (F ). Conclude by X is normal. �

12. Flat morphisms

Definition 12.1. An morphism f : X → Y is flat at x ∈ X if the local ring Ox is flat over
Of(x). If f is flat for all points then f is a flat morphism.
If V ⊂ Y is open or closed then the restriction f : f−1(V ) → V is flat. The projection
X × Y → X is flat. A morphism to a point is flat.

Proposition 12.2. Let f : X → Y be a flat morphism of irreducible varieties. If Z ⊂
f−1(y) is an irreducible component, then

dim Z = dim X − dim Y

Proof. 10.3. �

Proposition 12.3. Let f : X → Y be a flat morphism. Assume Y is irreducible and n is a
fixed number. The following are equivalent.

(1) Any irreducible component Z ⊂ X has

dim Z = dim Y + n

(2) If W ⊂ Y is irreducible and Z ⊂ f−1(W ) is an irreducible component, then

dim Z = dim W + n

(3) If Z ⊂ f−1(y) is an irreducible component, then

dim Z = n

Proof. 10.3. �
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Proposition 12.4. Let f : X → Y be a flat morphism. For any open U ⊂ X the image
f(U) ⊂ Y is open.

Proof. 10.3. �

Proposition 12.5. Let f : X → Y be a flat morphism with Y irreducible. Then there is a
nonempty open subset V ⊂ Y such that the restriction f : f−1(V ) → V is flat.

Proof. 10.3. �

Proposition 12.6. Let f : X → Y be a flat and finite morphism with Y irreducible. Then
for any nonempty open subset affine V ⊂ Y the extension

f∗(k[V ]) ⊂ k[f−1(V )]

is free.

Proof. 10.3. �

Proposition 12.7. Let f : X → Y be a finite morphism with Y irreducible. The following
are equivalent.

(1) f is flat.
(2) The rank

dimk Ox/f∗(my)
is independent of points y = f(x).

Proof. 10.3. �





CHAPTER III

Algebraic curves

In this note a curve is an irreducible nonsingular projective variety of dimension 1 over a
fixed algebraically closed ground field k.
The general theory for nonsingular and normal varieties, chapter II, section 9-11, provides
several useful facts.

(1) The normalization of an irreducible projective variety of dimension 1 is a curve,
II.11.8, II.11.4.

(2) A morphism U → Y from an open subset of a curve X to a projective variety
extends to a morphism X → Y , II.10.5.

(3) A nonconstant morphism f : X → Y of curves is surjective and characterized
by the finite field extension f∗ : k(Y ) → k(X), II.9.8.

(4) By normalization any finitely generated field K of trdegk K = 1 is the field of
rational functions K ' k(X) for a curve X unique up to isomorphism.

(5) A curve X admits a finite morphism X → P1.
(6) Also any curve is isomorphic to a curve in P3, II.10.6.

The theory of curves is therefore equivalent to the theory of finitely generated field exten-
sions of transcendence degree one over a fixed algebraically closed field.

1. Local ring

Let x be a point on a curve X . The local ring Ox is identified with a subring of the field of
rational functions k(X). The maximal ideal is denoted mx and k = Ox/mx.

Proposition 1.1. Let x be a point on a curve X . The maximal ideal in the local ring Ox

is principal and any nonzero ideal is a power of the maximal ideal. The local ring is a
principal ideal domain.

Proof. Let t ∈ mx give a generator of mx/m2
x. By I.9.1 mx = (t). By I.9.2 ∩n(tn) = 0,

so for 0 6= f ∈ Ox there is n such that f ∈ (tn) − (tn+1). Since any ideal is finitely
generated it follows that a nonzero ideal is of the form (tn). �

Definition 1.2. A function t giving a generator of mx is a local parameter at x. A nonzero
f ∈ k(X) has a unique representation f = uti where u is a unit in Ox and i ∈ Z. The
integer exponent is independent of the choice of local parameter t. This defines

vx : k(X)∗ → Z, f 7→ i

the valuation at x, satisfying
(1) vx(f) = 0 if f ∈ k∗.
(2) vx(fg) = vx(f) + vx(g)
(3) vx(f + g) ≥ min(vx(f), vx(g))

x is a zero of f if vx(f) > 0 and a pole if vx(f) < 0.
A surjective map k(X)∗ → Z satisfying (1)-(3) is a valuation on the field.

Proposition 1.3. Let x be a point on a curve X . The local ring is

Ox = {f ∈ k(X)|f = 0 or vx(f) ≥ 0}

37
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The maximal ideal is

mx = {f ∈ k(X)|f = 0 or vx(f) ≥ 1}

Proof. Property (1)-(3) in 1.2. �

Proposition 1.4. Let X be a curve. The map

x → vx

defines a bijection between the points of X and the set of valuations on the field k(X).

Proof. Let x, y ∈ X have vx = vy and choose an open affine set containing x, y. From
mx = my it follows that I(x) = I(y) and therefore x = y showing injectivity. Let v
be a valuation and assume X ⊂ Pn such that all Xi /∈ I(X) and v(Xi/X0) ≥ 0. Let
k[x1, . . . , xn] be the coordinate ring of X ∩ Pn − V (X0), note that {f | v(f) > 0} is
a maximal ideal and get a point (a1, . . . , an) such that v(xi − ai) > 0 for all i. Then
v(f) ≥ 0 for all f ∈ OX,a. It follows that v = va. �

Proposition 1.5. Let X be a curve.
(1) For a rational function f ∈ k(X)∗ there is at most finitely many points with

vx(f) 6= 0.
(2) For finitely many points x1, . . . , xs ∈ X and integers n1, . . . , ns there exists a

rational function f ∈ k(X) with

vxi
(f) = ni, i = 1, . . . , s

Proof. (1) {x|vx(f) 6= 0} is a closed subset. (2) Let U be an open affine subset containing
x1, . . . , xs and let m1, . . . ,ms ⊂ k[U ] be corresponding maximal ideals. Choose fi ∈
mi −m2

i ∪ ∪j 6=imj and set f =
∏

i fni
i . �

2. Divisor

Definition 2.1. A divisor on a curve X is a finite formal sum

D =
∑

i

nixi

where xi ∈ X and ni ∈ Z. This is an element in the divisor group Div(X) being the free
Abelian group on the points of X . The degree is deg(D) =

∑
i ni and this is an additive

map Div(X) → Z. D is effective if ni ≥ 0 for all i. There is an ordering D ≥ D′ if
D −D′ is effective.

Proposition 2.2. There is an additive map

div : k(X)∗ → Div(X), div(f) =
∑

x

vx(f) x

satisfying
div(f) = 0 if and only if f ∈ k∗

Proof. Well defined by 1.5. If div(f) = 0 then f ∈ Γ(X) and therefore constant by
II.3.10. �

Definition 2.3. A divisor D′ = D + div(g) is equivalent to D, D′ ∼ D.

Definition 2.4. For a divisor D the k-vector space

L(D) = {f ∈ k(X)|f = 0 or div(f) ≥ −D}
is the linear series. The dimension is denoted

l(D) = dimk L(D)

Proposition 2.5. For divisors D,D′ ∈ Div(X)



3. RIEMANN’S THEOREM 39

(1) If D ≥ D′ then L(D′) ⊆ L(D) and
dimk L(D)/L(D′) ≤ deg(D −D′).

(2) L(0) = k and if D < 0 then L(D) = 0.
(3) l(D) is finite.
(4) If D =

∑
nixi then l(D) ≤

∑
ni>0 ni + 1.

(5) If D ∼ D′ then l(D) = l(D′)

Proof. (1) Assume D =
∑

nxx = D′ +x and let t be a local parameter at x. Then L(D′)
is the kernel of the linear map

L(D) → k, f 7→ (tnxf)(x)

(2) If D < 0 then there is a zero. (3)-(4) Use (1) and (2). (5) If D + div(g) = D′ then
L(D′) ' L(D), f 7→ fg. �

3. Riemann’s Theorem

Definition 3.1. For a divisor D =
∑

nx x the k-vector space

Λ(D) = {λ : X → k(X)|λ(x) = 0 or vx(λ(x)) ≥ −nx, for all x}
is the adele series. The union

Λ(X) =
⋃
D

Λ(D)

contains k(X) as constant maps such that

L(D) = Λ(D) ∩ k(X)

Proposition 3.2. For divisors D ≥ D′

(1) Λ(D′) ⊆ Λ(D) and

dimk Λ(D)/Λ(D′) = deg(D −D′)

(2) l(D)− l(D′) =

deg(D)− deg(D′)− dimk Λ(D) + k(X)/Λ(D′) + k(X)

Proof. (1) Let nx ≥ n′x and t a local parameter at x, then t−nx , . . . , t−n′x−1 give a basis
over k at x. (2) Noether’s isomorphism and (1). �

Proposition 3.3. Let f ∈ k(X)∗ be a nonzero rational function.
(1) If f is nonconstant ∑

vx(f)>0

vx(f) = dimk(f) k(X)

(2) deg(div(f)) = 0.
(3) If D ∼ D′ then deg(D) = deg(D′).
(4) If deg(D) < 0 then l(D) = 0.

Proof. Let x1, . . . , xs be the points where vx(f) > 0. By 1.5 choose fi such that vxi
(fi) =

1 and vxj
(fi) >> 0, j 6= i, then

f−1
1 , . . . , f

−vx1 (f)
1 , . . . , f−1

s , . . . , f
−vxs (f)
s

are linear independent over k(f) giving∑
vx(f)>0

vx(f) ≤ dimk(f) k(X)

Let D =
∑

vx(f)>0 vx(f)x. If g ∈ k(X) is integral over k[f−1] then vx(g) ≥ 0 if x 6= xi,
all i. There exist a positive m0, g ∈ L(m0D) and for m ≥ m0

g, gf−1, . . . , gf−m+m0 ∈ L(mD)
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Applying this to a basis of k(X) over k(f) integral over k[f−1] give

l(mD) ≥ (m−m0 + 1) dimk(f) k(X)

From 3.2 we then get

m
∑

vx(f)>0

vx(f) ≥ −1 + dimk Λ(mD) + k(X)/Λ(0) + k(X)

+(m−m0 + 1) dimk(f) k(X)

for m >> 0. In the limit ∑
vx(f)>0

vx(f) ≥ dimk(f) k(X)

�

Theorem 3.4 (Riemann). The set

{deg(D) + 1− l(D)|D ∈ Div(X)}

is bounded above.

Proof. Let f ∈ k(X) be nonconstant and set D =
∑

vx(f)>0 vx(f)x. From 3.3 and its
proof follows

(m0 − 1) deg(D) ≥ dimk Λ(mD) + k(X)/Λ(0) + k(X)

giving the right hand side is a positive constant for large m, so

deg(mD) + 1− l(mD)

is a positive constant for large m.
It suffices to treat a divisor D′ ≥ 0. For m >> 0, l(mD − D′) > 0 so choose 0 6= h ∈
L(mD −D′) and get mD ≥ D′ − div(h) for m >> 0. The boundary for mD gives the
statement. �

Definition 3.5. The maximal number of the set above is the genus of X and denoted by
g = gX . Note that g ≥ 0.

Proposition 3.6.
(1) For any divisor D, l(D) ≥ deg(D) + 1− g.
(2) Let D0 be a divisor giving g = deg(D0) + 1− l(D0).

If deg(D) ≥ deg(D0) + g then l(D) = deg(D) + 1− g.

Proof. 3.4 and 2.5. �

Theorem 3.7. For any divisor D on a curve X

(1) Λ(X)/Λ(D) + k(X) has finite dimension over k.
(2) l(D)− dimk Λ(X)/Λ(D) + k(X) = deg(D) + 1− g.

Proof. 3.4 and 2.5. �

4. Rational differential and canonical divisor

Definition 4.1. Let X be a curve. The space of rational differentials on X is the k(X)-
vector space

Ω(X) = ⊕f∈k(X)k(X)df/(da, d(g + h)− dg − dh, d(gh)− hdg − gdh)

a ∈ k, g, h ∈ k(X) generate the relations.
The k-linear map d : k(X) → Ω(X), f 7→ df is the universal k-derivation on k(X), that
is any derivation is the composite of d and a k(X)-linear map.



4. RATIONAL DIFFERENTIAL AND CANONICAL DIVISOR 41

Theorem 4.2. The dimension of differentials

dimk(X) Ω(X) = 1

Any function t ∈ k(X) such that k(t) ⊂ k(X) is finite separable gives a basis dt for
Ω(X). If t is a local parameter at x, then dt is a basis.

Proof. By I.7.2 we may assume t transcendental over k and k(t) ⊂ k(X) finite separable
generated by u.
So k(X) = k(t)[u]/(g) with ∂g

∂u 6= 0. By implicit differentiation

du = −
∂g
∂t
∂g
∂u

dt

so dt is a generator and moreover

f 7→ ∂f

∂t
−

∂g
∂t
∂g
∂u

∂f

∂u

is a nonzero derivation, so dt is a basis.
Let x ∈ U = V (f1, . . . , fm) ⊂ An be an open affine neighborhood.

rankk

( ∂fi

∂Xj
(x)

)
= n− 1

so for a local parameter t

dt =
∑

j

∂t

∂Xj
dXj

must be nonzero. �

Definition 4.3. Let X be a curve. A nonzero rational differential ω ∈ Ω(X) has a presen-
tation fdt where t is a local parameter at x. Define the order at x

vx(ω) = vx(f)

independent of presentation and define a canonical divisor

div(ω) =
∑

vx(ω)x

The sum is finite since t− t(y) is a local parameter at y in an open neighborhood of x. All
these divisors are equivalent and any choice is denoted K = KX . For a divisor D there is
a k-vector space

Ω(D) = {ω ∈ Ω(X)|div(ω) ≥ D}

Proposition 4.4 (Serre duality). Let K = div(ω) be a canonical divisor. The linear map

L(K −D) → Ω(D), f 7→ fω

is an isomorphism.

Proof. 4.2. �

Definition 4.5. Let x be a point on a curve X . A local parameter t at x define compatible
ring isomorphisms

Ox/mn
x ' k[t]/(tn)

giving a ”Laurent series” embedding

Lt : k(X) → k((t))

into the fraction field of the power series ring. Remark that

vx(f) = min{r|ar 6= 0, Ltf = Σnantn}
and

Ox = k(X) ∩ k[[t]]
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In the basis dt a rational differential ω = fdt ∈ Ω(X) has a presentation

Ltω = Ltf dt

satisfying

Ltdf =
d

dt
Ltf dt = Σnnantn−1dt, Ltf = Σnantn

Define the residue
Rx(ω) = a−1

well defined by the following proposition.

Proposition 4.6. The definition of residue is independent of the choice of local parameter
t at x.

Proof. Let t, u be local parameters and Rt, Ru the residue maps. Assume f, g ∈ k(X),
then the claim is

Ru(Lugdf) = Rt(Ltgdf)
By the chain rule and additivity this reduces to

Ru(undu) = Rt(u(t)n du

dt
(t)dt)

for all integers n and u(t) = t + a2t
2 + . . . .

Rt(
1
t
(1 + a2t + . . . )−1(1 + 2a2t + . . . )dt) = 1

shows the claim for −1 ≤ n. If the characteristic of k is 0 the formula

u(t)n du

dt
(t) =

1
n + 1

dun+1

dt
(t)

gives the result for n < −1. Since the claim is a formal algebraic identity this suffices. �

Theorem 4.7. Let ω be a rational differential. The sum of residues vanishes∑
x

Rx(ω) = 0

Proof. If X = P1, k(X) = k(t) then expansion in partial fractions reduces to the case

ω = tndt = −
(1
t

)−n−2
d
1
t

For n = −1

R(0,1)(t−1dt) = 1, R(1,0)(−
(1
t

)−1
d
1
t
) = −1

give the formula. In general choose by I.7.2 a finite surjective separable morphism π :
X → P1, identifying π∗ : k(t)[u]/(g(u)) ' k(X) with g(u) separable of degree n. For
x ∈ P1, π−1(x) = {x1, . . . , xr} with local parameters t at x and ti at xi. By 3.3∑

i

vxi(π
∗(t)) = n

Laurent series
Lt : k(P1) → k((t)), Lti

: k(X) → k((ti))

Lti
(π∗(t)) = t

vxi
(π∗(t))

i + . . .

give field extensions

k((t)) ⊂ k((ti)) of dimension vxi
(π∗(t))

By counting dimensions

k((t))[u]/(g(u)) ' k((t1))× · · · × k((tr))
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so the trace map decomposes

Trk(X)/k(t) =
∑

i

Trk((ti))/k((t))

By the P1-case it is enough to show∑
i

Rxi(fdπ∗(t)) = Rx(Trk(X)/k(t)(f)dt)

which amounts to the local result

Rs(sm dt

ds
(s)ds) = Rt(Trk((s))/k((t))(sm)dt)

where t = sq + . . . determines the extension k((t)) ⊂ k((s)). Since the claim is a formal
algebraic identity the case where the characteristic of k is 0 suffices. In this case assume
by change of coordinates that t = sq. The computations

sm dt

ds
(s) = qsm+q−1

Trk((s))/k((t))(sm) =
{

0 , m 6= pq
qtm/q , m = pq

give the result. �

Theorem 4.8. The bilinear pairing

Ω(D)× Λ(X)/Λ(D) + k(X) → k

< ω, λ >=
∑

x

Rx(λ(x)ω)

is nondegenerate and

dimk Ω(D) = dimk Λ(X)/Λ(D) + k(X)

Proof. By 4.7 the pairing is well defined. If < ω, λ >= 0 for all λ ∈ Λ(X) then ω = 0.
Let D =

∑
nxx. If λ /∈ Λ(D) + k(X) then vx(λ(x)) < −nx for some x. After chancing

λ with a constant adele, let t be a local parameter at x chosen by 1.5 such that

vy(t)(vx(λ(x))− 1) + vy(λ(y)) ≥ 0

for y 6= x, then

< tvx(λ(x))−1dt, λ >= Rx(tvx(λ(x))−1λ(x)dt) 6= 0

�

5. Riemann-Roch Theorem

Theorem 5.1 (Riemann-Roch). Let K be a canonical divisor on a curve X of genus g.
Then for any divisor D

l(D)− l(K −D) = deg(D) + 1− g

Proof. By 4.8
dimk Ω(D) = dimk Λ(X)/Λ(D) + k(X)

3.7 and the isomorphism L(K −D) ' Ω(D) from 4.4. give the equality. �

Proposition 5.2. Let X be a curve of genus g, K a canonical divisor and D any divisor.
(1) deg(K) = 2g − 2.
(2) l(K) = g.
(3) If deg(D) ≥ 2g − 1 then l(D) = deg(D) + 1− g.
(4) If deg(D) = 2g − 2 and l(D) = g then D = K + div(g).

Proof. 5.1. �
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Proposition 5.3 (Clifford). If D is a divisor with l(D) > 0 and
l(K −D) > 0 then

l(D) ≤ 1 +
1
2

deg(D)

Proof. By the hypothesis assume D ≥ 0 and K −D ≥ 0 and such that l(D − x) < l(D)
for all x. h ∈ L(D)− ∪xL(D − x) union over x with K −D − x ≥ 0 gives an injective
map

L(K −D)/L(0) → L(K)/L(D), f 7→ hf

Then by Riemann-Roch Theorem 5.1

l(D) ≤ 1 + l(K)− l(D)− deg(K) + deg(D)− 1 + g

= −l(D) + 2 + deg(D)

�

Proposition 5.4. If n ≥ 2g then for every x ∈ X there is f ∈ k(X) with "pole of order n
at x", that is

vx(f) = −n, vy(f) ≥ 0, y 6= x

Proof. f ∈ L(nx)− L((n− 1)x) by 5.2. �

6. Zeuthen-Hurwitz formula

Let f : X → Y be a nonconstant morphism of curves.

Definition 6.1. f is surjective and by composition there is defined a finite field extension
k(Y ) ⊆ k(X). The degree of f is

deg(f) = dimk(Y ) k(X)

For x ∈ X the ramification is

ex = vx(f∗(u))

where u is a local parameter at f(x). A point x with ex > 1 is a ramification point of f .

Proposition 6.2. For y ∈ Y ∑
x∈f−1(y)

ex = deg(f)

There are only finitely many ramification points, that is ex = 1 except for finitely many
x ∈ X .

Proof. For Y = P1 this is 3.3.
In general choose by 5.4 h ∈ L(ny) such that vy(h) = −n, vz(h) ≥ 0, z 6= y. This gives
a morphism h : Y → P1. The claim for h, h ◦ f gives the claim for f . II.11.6 give ex = 1
except for finitely many x. �

Theorem 6.3 (Zeuthen-Hurwitz). Let f : X → Y be a nonconstant morphism and assume
that field extension k(Y ) ⊂ k(X) is separable and that the characteristic of the ground
field k do not divide any ramification index ex. Let gX , gY denote the genus, then

2gX − 2 = deg(f) (2gY − 2) +
∑

x

(ex − 1)
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Proof. Let dh be a nonzero differential on Y , then by separability df∗(h) is a nonzero
differential on X . Let f(x) = y. If vy(h) 6= 0 then by separability and the condition on
ex, vy(dh) = vy(h)− 1 and vx(df∗(h)) = exvy(h)− 1, otherwise all are zero. Therefore

2gX − 2 =
∑

x

vx(df∗(h))

=
∑

y

∑
x∈f−1(y)

(exvy(h)− 1)

=
∑

y

(vy(h)− 1)
∑

x∈f−1(y)

ex +
∑

x

(ex − 1)

and then

2gX − 2 =
∑

y

vy(dh) deg(f) +
∑

x

(ex − 1)

= deg(f)(2gY − 2) +
∑

x

(ex − 1)

�

Definition 6.4. A curve X of genus g ≥ 2 is hyperelliptic if there is a separable morphism
f : X → P1 of deg(f) = 2. The involution on the field extension k(P1) ⊂ k(X) gives an
involution τ : X → X commuting with f , f ◦ τ = f .

Proposition 6.5. Assume that the characteristic of k is not 2.
(1) A curve of genus g = 2 is hyperelliptic.
(2) A hyperelliptic curve has exactly 2g + 2 ramification points.

Proof. (1) Choose a canonical divisor K ≥ 0. f ∈ L(K) − L(0) gives f : X → P1 of
degree 2. (2) Let f : X → P1 be of degree 2. By 6.3∑

(ex − 1) = 2g + 2,
∑

x∈f−1(y)

ex = deg(f) = 2

give the number of ramification points. �

7. Plane curves

Let X = V (F ) ⊂ P2 be a plane curve with F ∈ k[X, Y, Z] irreducible homogeneous of
degree n.

Definition 7.1. Let G ∈ k[X, Y, Z] be a homogeneous form of degree m and not divisible
by F . Then V (F ) ∩ V (G) = {x1, . . . , xs}. Let L ∈ k[X, Y, Z] be a linear form such that
V (L) ∩ {x1, . . . , xs} = ∅ and define a divisor

div(G) =
∑

i

vxi
(

G

Lm
)xi

independent of L. This satisfies the product rule

div(GH) = div(G) + div(H)

and therefore defines a divisor

div(
G

H
) = div(G)− div(H)

also satisfying the product rule.

Proposition 7.2 (Bezout).
(1) div(G) ≥ 0.
(2) deg(div(G)) = mn.
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Proof. (2) Assume by change of coordinates and product rule that G = Z. Then use
3.3. �

Proposition 7.3. The genus of X is

g =
1
2
(n− 1)(n− 2)

Proof. Assume X ∩ V (Y, Z) = ∅. For a fraction H
K of homogeneous forms of degree d

such that div(H
K ) ≥ −div(Zm)

vx(
HZm

Y m+d
) ≥ vx(

K

Y d
)

for all x. This gives forms G, E such that

HZm = GK + EF

It follows that the linear map

k[X, Y, Z]m → L(div(Zm)), G 7→ G

Zm

is surjective and the linear map

k[X, Y, Z]m−n → k[X, Y, Z]m, H 7→ H · F
for large m is an isomorphism onto the kernel of the map above. This gives for large m

l(div(Zm)) =
(

m + 2
2

)
−

(
m− n + 2

2

)
= mn +

3n− n2

2
Then by 3.6

g = deg(Zm) + 1− l(div(Zm)) = mn + 1− (mn +
3n− n2

2
) =

1
2
(n− 1)(n− 2)

�

8. Morphisms to projective space

Definition 8.1. Let D be a divisor on X . A basis f0, . . . , fn of L(D) give a morphism

φ(x) = (f0(x), . . . , fn(x)) : X → Pn

depending on the basis up to an isomorphism of Pn.

Proposition 8.2. Assume D ≥ 0 and let φ : X → Pn be given above. If

l(D − x− y) = l(D)− 2 for all x 6= y

then φ is injective. If the condition also holds for x = y then

φ : X → φ(X)

is an isomorphism.

Proof. Let D =
∑

nzz with nx = ny = 0 and assume vx(f0) = 0 and vy(f0) = 1. Then

φ(x) = (1, . . . ) 6= (0, . . . ) = φ(y)

Next assume vx(f1) = 1 and let (Y0, . . . ) be coordinates in Pn. Then

φ∗(
Y1

Y0
) =

f1

f0

is a local parameter at x giving injectivity of the differential dφ(x) : TxX → Tφ(x)Pn.
Conclude by II.9.9. �

Proposition 8.3. Assume D ≥ 0 and let φ : X → Pn be given above.
(1) If deg(D) ≥ 2g + 1 then φ : X → φ(X) is an isomorphism.
(2) If genus g = 0 and D = x then φ : X → φ(X) = P1 is an isomorphism.
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(3) If genus g = 1 and D = 3x then φ : X → φ(X) ⊂ P2 is an isomorphism.
(4) If genus g ≥ 2 and D = 3K then φ : X → φ(X) ⊂ P5g−5 is an isomorphism.
(5) If genus g > 2 and D = K then φ : X → Pg−1 is injective and if X is not

hyperelliptic then φ : X → φ(X) ⊂ Pg−1 is an isomorphism.

Proof. Riemann-Roch Theorem 5.1. 5.2. �

9. Weierstrass points

Definition 9.1. n is a gap number at x if l(nx) = l((n − 1)x), that is if there exists no
rational function f such that vx(f) = −n, vy(f) ≥ 0, y 6= x or there exists a rational
differential ω such that vx(ω) = n− 1, vy(ω) ≥ 0, y 6= x.

Proposition 9.2. At a given x there are exactly g gap numbers

1 = i1 < · · · < ig ≤ 2g − 1

Proof. By 5.2
1 = l(0) ≤ · · · ≤ l((2g − 1)x) = g

l(nx) ≤ l((n− 1)x) + 1, with equality if n ≥ 2g

�

Definition 9.3. x is a Weierstrass point if some gap number ij 6= j, that is the sequence
of gap numbers is not

1 < · · · < g

By the Riemann-Roch Theorem x is a Weierstrass point exactly if l(gx) > 1 or if l(K −
gx) = dim Ω(gx) > 0.

Proposition 9.4. On a curve of genus g = 0, 1 there are no Weierstrass points. On a
hyperelliptic curve of genus g the 2g + 2 ramification points are the Weierstrass points.

Proof. 6.3. �

Theorem 9.5. If the characteristic of k is 0 then there are only finitely many Weierstrass
point on a given curve X . If the genus g ≥ 2 and the curve is not hyperelliptic then there
are at least 2g + 3 Weierstrass points.

Proof. If u is a nonconstant rational function there is a basis
f1du, . . . , fgdu for Ω(0) such that vx(fjdu) = ij(x)− 1 for every gap number ij(x) at x.
Let t be a local parameter at x, then fjdu = fj

du
dt dt so a local calculation gives

vx(det
(di−1fj

dui−1

)
) =

∑
(ij − j)− 1

2
g(g + 1)vx(du)

Summing over all points x give∑
x,j

(ij(x)− j) = (g − 1)g(g + 1)

The claim now follows. �

10. Automorphisms

Proposition 10.1. A nontrivial automorphism of a curve of genus g has at most 2g + 2
fixed points.

Proof. Choose f ∈ k(X) with g + 1 poles disjoint from the fixed points of an automor-
phism σ.Then f − f ◦ σ has 2g + 2 poles and therefore at most this number of zero’s. �

Theorem 10.2 (Hurwitz). Assume the characteristic of k is 0. For a curve X of genus
g ≥ 2 the group of automorphisms Aut(X) is a finite group and the order is bounded

|Aut(X)| ≤ 84(g − 1)
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Proof. If X is not hyperelliptic then an automorphism is determined by the permutation
of the more than 2g + 2 Weierstrass points. If f : X → P1 is hyperelliptic then an
automorphism commutes with the involution τ and therefore induces an automorphism of
P1 which permute the images of the 2g + 2 > 5 ramification points. In all cases Aut(X)
is finite.
Let |Aut(X)| = n and choose by normalization a curve Y together with a morphism
f : X → Y of deg(f) = n identifying f∗(k(Y )) = k(X)Aut(X) as the fixed field. By the
Zeuthen-Hurwitz formula

2g − 2
n

= 2gY − 2 +
∑

y

(1− 1
ry

)

giving
2g − 2

n
≥ −2 + (1− 1

2
) + (1− 1

3
) + (1− 1

7
) =

1
42

�



Examples and comments

k is a fixed algebraically closed ground field of characteristic 0 when necessary.

1. Non affine variety

1.1. The open subset A1−{0} of A1 is a variety isomorphic to the affine variety V (Y1Y2−
1) ⊂ A2. The isomorphism is given by

x1 7→ (y1, y2) = (x1,
1
x1

)

(y1, y2) 7→ x1 = y1

The coordinate ring

k[A1 − {0}] ' k[X1, X
−1
1 ]

1.2. The open subset An − V (Xn) of An is a variety isomorphic to the affine variety
V (YnYn+1 − 1) ⊂ An+1. The isomorphism is given by

x 7→ y = (x,
1
xn

)

y 7→ x = (y1, . . . , yn)

The coordinate ring

k[An − V (Xn)] ' k[X1, . . . , Xn, X−1
n ]

1.3. The open subset U = A2 − {(0, 0)} of A2 is a variety not isomorphic to any affine
variety.
The inclusion gives an injective ring homomorphism

k[X1, X2] → Γ(U)

A regular function f : U → k has representations

f =
P (X1, X2)

Xd
1

, x ∈ A2 − V (X1)

f =
Q(X1, X2)

Xd
2

, x ∈ A2 − V (X2)

giving

P (X1, X2)Xd
2 = Q(X1, X2)Xd

1 , (x, y) ∈ A2 − V (X1X2)

By irreducibility of A2 and unique factorization in the polynomial ring it follows that
the ring homomorphism above is surjective. If U is isomorphic to an affine variety, then
the ring isomorphism above is an isomorphism of coordinate rings contradicting that the
inclusion U ⊂ A2 is not an isomorphism.

49
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2. Bijective morphism

2.1. The morphism
A1 → A2, x 7→ y = (x2

1, x
3
1)

is a bijection onto the affine variety V (Y 3
1 − Y 2

2 ) ⊂ A2. The induced ring homomorphism
of coordinate rings

k[Y1, Y2]/(Y 3
1 − Y 2

2 ) → k[X1]
is not surjective, so the morphism above is not an isomorphism.
Moreover the varieties A1 and V (Y 3

1 − Y 2
2 ) are not isomorphic by any morphism, since

the ring k[X2
1 , X3

1 ] is not normal.

2.2. The morphism
P1 → P2, x 7→ y = (x2

0, x0x1, x
2
1)

is an isomorphism onto the projective variety V (Y0Y2 − Y 2
1 ) ⊂ P2.

The inverse morphism is given by

y 7→ x =
{

(y0, y1) , y0 6= 0
(y1, y2) , y2 6= 0

The homogeneous coordinate rings

k[X0, X1] and k[Y0, Y1, Y2]/(Y0Y2 − Y 2
1 )

are not isomorphic as graded rings.

2.3. The morphism
P1 → P2, x 7→ y = (x3

0, x0x
2
1, x

3
1)

is a homeomorphism onto the projective variety V (Y0Y
2
2 − Y 3

1 ) ⊂ P2. But it is not an
isomorphism.

3. Finite morphism

3.1. The inclusion
A1 − {0} ⊂ A1

is not a finite morphism.

3.2. The morphism

A1 − {0} → A1, x 7→ x +
1
x

is a finite surjective morphism. The corresponding ring extension is

k[X +
1
X

] ⊂ k[X,
1
X

]

If U = X + 1
X then

X2 − UX + 1 = 0,

(
1
X

)2

− U
1
X

+ 1 = 0

3.3. The morphism
A1 → P1, x 7→ y = (x2

1 − 1, x1)
is a finite surjective morphism. Extend to

P1 → P1, x 7→ y = (x2
1 − x2

0, x0x1)

3.4. The composite morphism

A1 − {0} → P1, x 7→ y = (x2
1 +

1
x2

1

+ 1, x1 +
1
x1

)

is a surjective morphism.
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4. Constructible set

4.1. The morphism
A2 → A2, x 7→ y = (x1x2, x2)

has a constructible image

Y = (A2 − V (Y2)) ∪ {(0, 0)}

which is not a variety in A2.
The closure of Y is A2. If Y is open then {0} ⊂ A1 is open, contradicting irreducibility of
A1.

4.2. Let W be a constructible set in a variety X . If the closure W is irreducible then there
is a subset U ⊂ W being open in W .

W = U1 ∩ Z1 ∪ · · · ∪ Us ∩ Zs

so for some i, W ⊂ Zi.
In general W contains a subset dense in W .

5. Connected variety

5.1. An affine variety X is connected if and only if 0, 1 are the only idempotent elements
in the coordinate ring k[X].
If e 6= 0, 1 is idempotent then

X = V (e) ∪ V (1− e), V (e) ∩ V (1− e) = ∅

If
X = V (I) ∪ V (J), V (I) ∩ V (J) = ∅

then conclusion by Chinese remainder theorem.

5.2. The affine variety V (X1X2) ⊂ A2 is connected but not irreducible.

6. Morphism of projective space

6.1. The projection
p : An+1 − {0} → Pn, x 7→ y

is locally of the form
p−1(Ui) ' An × (A1 − {0})

x 7→ (y, u) = (
x0

xi
, . . . ,

xn

xi
, xi)

(y, u) 7→ x = (uy1, . . . , u, . . . , uyn)

For an irreducible variety X in Pn p−1(X) is irreducible and

dim p−1(X) = dimX + 1

6.2. A morphism f : Pm → Pn is constant if m > n.
Y = f(Pm) ⊂ Pn is irreducible and closed. Assume

n > r = n− dim Y ≥ 0

Choose linear forms L0, . . . , Lr ∈ k[Pn] such that Y ∩ V (L0, . . . , Lr) = ∅. The inverse
image f−1(V (Li)) 6= ∅ and any component Z has dimension dim Z ≥ m− 1. Since

f−1(V (L0)) ∩ · · · ∩ f−1(V (Lr)) = ∅

it follows that
m ≤ r + 1 ≤ n
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6.3. Projection from a point

p : Pn − {(0, . . . , 0, 1)} → Pn−1, x 7→ y = (x0, . . . , xn−1)

gives a finite morphism from a projective variety X ⊂ Pn not containing the point (0, . . . , 0, 1).
p−1(Pn−1 − V (Yi)) = Pn − V (Xi) is affine. Let F (X0, . . . , Xn) ∈ I(X) be such that
F (0, . . . , 0, 1) 6= 0. Then

k[
y0

yi
, . . . ,

yn−1

yi
] → k[

x0

xi
, . . . ,

xn−1

xi
]/(F (

x0

xi
, . . . ,

xn−1

xi
))

is finite and maps onto k[X − V (Xi)].

6.4. An automorphism of the projective line is linear

f : P1 → P1, x 7→ y = (a0x0 + b0x1, a1x0 + b1x1)

with a0b1 − a1b0 6= 0.
Remark that

f(1, 0) = (a0, a1), f(0, 1) = (b0, b1), f(1, 1) = (a0 + b0, a1 + b1)

For a given automorphism g and the distinct points g(1, 0) = (a0, a1), g(0, 1) = (b0, b1), g =
(1, 1) = (c0, c1) ∈ P1 there is a choice of a0, a1, b0, b1 ∈ k such that (c0, c1) = (a0 +
b0, a1 + b1). The composite f−1 ◦ g induces an isomorphism of A1 = P1−{(0, 1)} being
the identity.

7. Big fibre

7.1. The morphism
f : A2 → A2, x 7→ y = (x1x2, x2)

has image
Y = (A2 − V (Y2)) ∪ {(0, 0)}

and therefore dominating. The fibres are

f−1(y) =
{

V (X2) , y = (0, 0)
(y1

y2
, y2) , y2 6= 0

7.2. The closure of the graph of the projection

An+1 − {0} → Pn, x 7→ y

Z = V ({XiYj −XjYi|i 6= j}) ⊂ An+1 × Pn

is the blowup of 0 in An+1. The projection p : Z → An+1 is a finite surjective map with
fibres

p−1(x) =
{
{0} × Pn , x = 0

(x, x) , x 6= 0

8. Big tangent space

8.1. The morphism

f : A1 → An, x 7→ y = (xn+1
1 , . . . , x2n

n )

has closed image Y . The tangent space is

T0Y = kn

8.2. The curve Y is not isomorphic to a curve in any Am for m < n.
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9. Algebraic group

9.1. A group G which is an algebraic variety such that composition G × G → G and
inversion G → G are morphisms is called an algebraic group. There are many popular
examples

• An with addition
• A1 − {0} with multiplication
• The group of invertible matrices with matrix multiplication

9.2. The connected component Ge containing the unit is irreducible and again an algebraic
group.
Let G1 . . . Gs be multiplication of the irreducible components containing e. The image
contains all Gi so s = 1 and G1 is a subgroup. The cosets xG is an irreducible component
containing x, so there are only finitely many cosets. These being disjoint gives Ge = G1.

9.3. If f : G → H is a homomorphism of algebraic groups, then the image f(G) is a
closed subgroup of H .
By constructibility let V ⊂ f(G) be non-empty and dense in f(G). For y ∈ f(G) V ∩
yV −1 6= ∅ so

f(G) ⊂ f(G)f(G) = f(G)

9.4. If an algebraic group G is projective, then G is an Abelian group.
The commutator morphism

f : G×G → G, (x, y) 7→ xyx−1y−1

satisfy f(G× e) = e and therefore constant.

10. Projective line

10.1. Let P1 = U0 ∪ {∞ = (0, 1)}. The morphism A1 → P1, x 7→ y = (1, x1) identifies
k(X1) = k(Y1

Y0
).

X1 − x1 =
y0Y1 − y1Y0

y0Y0

is a local parameter at x = (1, x1) = (y0, y1).

1
X1

=
Y0

Y1

is a local parameter at ∞ = (0, 1).

10.2. The differential dX1 6= 0 in Ω(P1).

dX1 = d(X1 − x1) ⇒ vy(dX1) = 0, y ∈ U0

dX1 = −
(

1
X1

)−2

d
1

X1
⇒ v∞(dX1) = −2

A canonical divisor is
KP1 = −2 · ∞

10.3. Calculate

vx(X1 − x1) =

 0 , x 6= x1

1 , x = x1

−1 , x = ∞
giving

div(X1 − x1) = 1 · x1 − 1 · ∞
For

f = (X1 − x11)m1 . . . (X1 − x1s)ms
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the divisor

div(f) = m1 · x11 + · · ·+ ms · x1s − (m1 + · · ·+ ms) · ∞

10.4. Calculate for n ≥ 0

L(n · ∞) = {f |div(f) ≥ −n · ∞} = Span(1, X1, . . . , Xn)

giving
l(n · ∞) = n + 1

Conclude that the genus
gP1 = 0

10.5. For a general divisor D on P1 the Riemann-Roch theorem states

l(D)− l(−2 · ∞ −D) = deg D + 1

11. Conic

11.1. A plane curve given by a homogeneous form F of degree 2 is a conic. Let char(k) 6=
2, then by change of coordinates

F = aX2
0 + bX2

1 + cX2
2

and
dF = 2aX0dX0 + 2bX1dX1 + 2cX2dX2

Necessary and sufficient for V (F ) ⊂ P2 to be nonsingular and irreducible is abc 6= 0.

11.2. By further change of coordinates

F = X2
0 + X2

1 + X2
2 = (X0 −

√
−1X2)(X0 +

√
−1X2) + X2

1

The morphism P1 → P2

(y0, y1) 7→ (x0, x1, x2) = (
1
2
(y2

0 + y2
2), y0y2,

1
2
√
−1

(y2
0 − y2

2))

is an isomorphism P1 ' V (F ).

12. Elliptic curve

12.1. A curve X of genus 1 is called an elliptic curve. The canonical divisor K has

deg K = 0, l(K) = 1

so K ∼ 0. The Riemann-Roch theorem gives

l(D)− l(−D) = deg D

for any divisor D.

12.2. Let Div0(X) be the subgroup of divisors of degree 0. Fix a point x0 on X . The map

φ : X → Div0(X)/ div(k(X)∗), x 7→ x− x0

is a bijection.

12.3. The map

X ×X → X

(x1, x2) 7→ φ−1(x1 − x0 + x2 − x0)

defines a structure of abelian algebraic group on X with zero x0.
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12.4. Assume char(k) 6= 2, 3. A plane curve given by a homogeneous form F of degree
3 is an elliptic curve. By change of coordinates

F = X3
1 + aX2

0X1 + bX3
0 −X0X

2
2

and

dF = (2aX0X1 + 3bX2
0 −X2

2 )dX0 + (3X2
1 + aX2

0 )dX1 + (−2X0X2)dX2

Necessary and sufficient for V (F ) ⊂ P2 to be nonsingular and irreducible is

16a3 + 27b2 6= 0

13. Morphism of a cubic curve

13.1. The variety X ⊂ P2 given by the equation

X3
0 −X0X

2
2 −X2

1X2 = 0

intersects the hyperplanes

X ∩ V (X0) = {(0, 1, 0), (0, 0, 1)}
X ∩ V (X1) = {(0, 0, 1), (1, 0, 1), (1, 0,−1)}

X ∩ V (X2) = {(0, 1, 0)}
and therefore covered by the affine pieces

X1 6= 0, X3
0 −X0X2 −X2 = 0

X0X2 6= 0, X3
0 −X0 −X2

1 = 0
A morphism f : X → X is given by

f(
x0

x1
,
x2

x1
) = (−x0

x1

x2

x1
,−x2

x1
,
x0

x1

x0

x1
)

f(
x0

x2
,
x1

x2
) = (−x0

x2
,−x1

x2
,
x0

x2

x0

x2
)

This is an isomorphism, the inverse being f itself.

14. Hyperelliptic curve

14.1. Assume char(k) = 0. An affine variety in A2 is given by the affine equation

X2
2 = g(X1) = (X1 − a1) . . . (X1 − an)

where n ≥ 5 is odd and a1, . . . , an are all nonzero and different. The projective closure by
X1 = Y1

Y0
, X2 = Y2

Y0
is given by the homogeneous form

F = Y n−2
0 Y 2

2 − (Y1 − a1Y0) . . . (Y1 − anY0)

The differential has components

∂F

∂Y0
= (n− 2)Y n−3

0 Y 2
2 −

∂F

∂Y0

(
Y n

0 g

(
Y1

Y0

))
∂F

∂Y1
= −Y n−1

0 g′
(

Y1

Y0

)
∂F

∂Y2
= 2Y n−2

0 Y2

This shows that the projective closure has a singular point at (0, 0, 1). The normalization
Y is a hyperelliptic curve.

14.2. Let f : Y → P1 be the extension to the normalization of the projection from
(0, 0, 1), (y0, y1, y2) 7→ (y0, y1), V (F ) − (0, 0, 1) → P1. f has degree 2 and gives the
field extension

k(X1) ⊂ k(X1)[X2]/(X2
2 − g(X1))
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14.3. f : Y → P1 is clearly ramified over the n points (1, a1), . . . , (1, an). If f were not
ramified at z ∈ f−1(0, 1) then vz(X1) = −1 and

2vz(X2) = vz(g(X1)) = −n

As n is odd, f is ramified over (0, 1) as well. The ramification is 2 so the Zeuthen-Hurwitz
formula gives

2g − 2 = 2(−2) + (n + 1), g =
n− 1

2

15. Fermat curve

15.1. Assume char(k) = 0. A plane curve given by a homogeneous form

F = Y n
0 + Y n

1 + Y n
2

is a Fermat curve.
dF = (nY n−1

0 , nY n−1
1 , nY n−1

2 )

so V (F ) ⊂ P2 is nonsingular and irreducible.

15.2. Let X1 = Y1
Y0

, X2 = Y2
Y0

be the affine coordinates on P2 − V (Y0) satisfying

Xn
1 + Xn

2 = −1

The differential ω = dX1 is treated by the relation

Xn−1
1 dX1 + Xn−1

2 dX2 = 0

In a point x = (x1, x2), x2 6= 0, a local parameter is X1− x1 giving vx(ω) = 0. If x2 = 0
then X2 is a local parameter at the n points x = (ζi, 0) running through n

√
−1. The relation

above gives vx(ω) = n− 1.

15.3. Let X0 = Y0
Y1

, X2 = Y2
Y1

be the affine coordinates on P2−V (Y1) and get the relation

dX1 = −X−2
0 dX0

In a point x = (0, ζi) a local parameter is X0 giving vx(ω) = −2.

15.4. A canonical divisor is

div dω =
∑

i

(n− 1) · (1, ζi, 0)− 2 · (0, 1, ζi)

The degree is
n(n− 3) = 2g − 2

confirming the genus formula

g =
(n− 1)(n− 2)

2

16. Genus formula

16.1. Let a plane curve X be given by a homogeneous form F of degree n. Assume after
change of coordinates that (0, 0, 1) /∈ X and only simple tangents through (0, 0, 1). The
tangents points is the intersection of X and V ( ∂F

∂X2
). By Bezout’s theorem the number is

n(n− 1). Apply Zeuthen-Hurwitz formula to the projection from (0, 0, 1) of X to get

2g − 2 = n(−2) + n(n− 1)

giving

g =
(n− 1)(n− 2)

2
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16.2. Let a plane curve X be given by a homogeneous form F of degree n. Assume after
change of coordinates that

(1, 0, 0) /∈ X ∩ V (X2) = {x1, . . . , xn}

and X2
X1

is a local parameter at {x1, . . . , xn}. U0 = X0
X2

, U1 = X1
X2

satisfy the equation
F (U0, U1, 1) = 0. A canonical divisor is given by the differential

ω =
dU0

∂F
∂U1

= −dU1

∂F
∂U0

Calculate
vxi(ω) = n− 3

and
deg(div ω) = n(n− 3) = 2g − 2

giving

g =
(n− 1)(n− 2)

2

17. Automorphism

17.1. The Fermat curve X given by

X4
0 + X4

1 + X4
2 = 0

has genus g = 3 and a canonical divisor of deg K = 4 and l(K) = 3.

17.2. Permutation of coordinates define 6 automorphisms of X . Multiplication of a coor-
dinate with a fourth root of unit define 16 automorphisms. All together

96 = |Aut(X)| ≤ 84(g − 1) = 168

17.3. The curve given by

X3
0X1 + X3

1X2 + X0X
3
2 = 0

has genus g = 3 and
|Aut(X)| = 84(g − 1) = 168

18. Grassmann variety

18.1. The set of linear subspaces of fixed dimension m in Pn is bijectively described by a
projective subset of P(n+1

m+1)−1 called the Grassmann variety Gn,m.

18.2. Choose a basis of the m + 1 dimensional subspace of kn+1 as row vectors, giving a
(m + 1)× (n + 1)-matrix. For m + 1 columns with indexes 0 ≤ j0 < · · · < jm ≤ n + 1
let the (m + 1)-minor give the Plücker coordinates

(yj0...jm) ∈ P(n+1
m+1)−1

A change of basis multiply all minors with the determinant of the base change matrix.

18.3. The Grassmann variety is the projective subset given by the Plücker relations homo-
geneous of degree 2. Let 0 ≤ j0, . . . , jm ≤ n + 1 be indices. If some are equal then put
yj0...jm

= 0. Otherwise let σ be the permutation giving ordering jσ(0) < · · · < jσ(m) and
put yj0...jm = sign(σ)yjσ(0)...jσ(m) . The relations are then

yi0...im
yj0...jm

=
∑

r

yi0...jr...im
yj0...is...jm

for all indices and 0 ≤ s ≤ m.
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18.4. Lines in P3, n = 3,m = 1 give one nontrivial relation

y01y23 − y02y13 + y03y12 = 0

defining G3,1 as a hypersurface in P5.

18.5. By Gauss elimination the Grassmann variety is covered by open affine spaces A(m+1)(n−m).
It follows that Gn,m is an irreducible nonsingular projective variety of dimension

dim Gn,m = (m + 1)(n−m)

19. Secant and tangent variety

19.1. Let X ⊂ PN be a nonsingular projective variety of dimension n. Let W ⊂ PN ×
PN × PN be points on lines

W = {(x, y, z)|z on the line through x, y}
Let ∆X ⊂ X ×X be the diagonal. Consider projections

φ : (X ×X × PN −∆X × PN ) ∩W → PN

π : (X ×X × PN −∆X × PN ) ∩W → X×X

The image Im(φ) ⊂ PN is the secant variety. By the fibre dimension formula

dim Im(φ) ≤ dim X ×X + dim π−1(x, y) = 2n + 1

19.2. Let X ⊂ PN be a nonsingular projective variety of dimension n. Let W ⊂ X × PN

be points on tangent lines
W = {(x, y)|y ∈ TxX}

Consider projections
φ : W → PN

π : W → X

The image Im(φ) ⊂ PN is the tangent variety. By the fibre dimension formula

dim Im(φ) ≤ dim X + dim π−1(x) = 2n

20. Determinantal variety

20.1. Let {Xij} be a m×n-matrix of indeterminates. The affine subvariety of Amn given
by

V (r −minors of {Xij})
is of dimension mn− (m− r + 1)(n− r + 1).

20.2. The determinantal variety is normal. If m,n ≥ r > 1 then 0 is a singular point.

21. Jacobian question

21.1. Assume char(k) = 0 and let

f : An → An

be a morphism with Jacobian determinant

Jf = det
{

∂fi

∂Xj

}
∈ k∗

Is f an isomorphism?

21.2. The question is unanswered even in case

f : C2 → C2
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