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Abstract

Balas introduced intersection cuts for mixed integer linear sets. Intersec-

tion cuts are given by closed form formulas and form an important class of

cuts for solving mixed integer linear programs. In this paper we introduce

an extension of intersection cuts to mixed integer conic quadratic sets. We

identify the formula for the conic quadratic intersection cut by formulating

a system of polynomial equations with additional variables that are satisfied

by points on a certain piece of the boundary defined by the intersection cut.

Using a software package from algebraic geometry we then eliminate variables

from the system and get a formula for the intersection cut in dimension three.

This formula is finally generalized and proved for any dimension. The intersec-

tion cut we present generalizes a conic quadratic cut introduced by Modaresi,

Kilinc and Vielma.

1 Introduction

In this paper we study a mixed integer set obtained from a single conic quadratic
inequality defined from rational data A ∈ Qm×n and d ∈ Qm:

QI := {x ∈ Rn : Ax− d ∈ Lm and xj ∈ Z for j ∈ I}, (1)

where Lm is the m-dimensional Lorentz cone Lm := {y ∈ Rm : ym ≥
√

∑m−1
j=1 y2j }

and I is an index set for the integer constrained variables. The continuous relaxation
of QI is given by Q := {x ∈ Rn : Ax − d ∈ Lm}. A mixed integer conic quadratic
set of the form QI can be obtained from a single constraint of the continuous
relaxation of a Mixed Integer Conic Quadratic Optimisation (MICQO) problem.
Valid inequalities for QI (linear or non-linear) can therefore be used as cuts for
solving MICQO problems.

The present paper gives an extension of the intersection cut of Balas [4] from
Mixed Integer Linear Optimisation (MILO) problems to MICQO problems. Several
previous papers have aimed at extending cuts from MILO to MICQO. An extension
of the mixed integer rounding cuts of Nemhauser and Wolsey [13] to MICQO was
given by Atamtürk and Narayanan [2, 3]. Çezik and Iyengar [7] studied the extension
of the Chvátal-Gomory procedure from MILO to MICQO. The Lift-and-Project
algorithm of Balas et al. [5] developed for MILO was generalized by Stubbs and
Mehrotra [15] to MICQO.

Intersection cuts form a very important class of cutting planes for solving MILO
problems [6]. Mixed Integer Rounding (MIR) cuts [13], Mixed Integer Gomory
(MIG) cuts [9], Lift-and-Project cuts [5] and Split Cuts [8] are all intersection cuts.
Since the intersection cuts we propose for MICQO are also given by a closed form
formula and derived using similar principles as for MILO problems, we hope they
can be equally useful for solving MICQO problems.
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As our study is inspired by the intersection cut introduced by Balas [4] for a
mixed integer linear set PI := {x ∈ P : xj ∈ Z for j ∈ I} with a polyhedral relax-
ation P := {x ∈ Rn : Ax − d ∈ Rm

+}, we first review the derivation of intersection
cuts in a linear setting.

Intersection cuts for PI are derived from a maximal choice B of linearly inde-
pendent rows {ai}i∈B of the matrix A. A given choice B gives a relaxation:

PB := {x ∈ Rn : aTi x− di ≥ 0 for i ∈ B} (2)

of P obtained by removing constraints not indexed by B. An intersection cut is
then obtained from PB and a choice of a split disjunction. A split disjunction is a
disjunction of the form πTx ≤ π0∨πTx ≥ π0+1, with (π, π0) ∈ Rn+1 chosen so that
there are no mixed integer points strictly between the hyperplanes πTx = π0 and
πTx = π0+1. The simple geometry of PB gives that the convex hull conv(PB

1 ∪P 2
B)

of the sets:

PB
1 := {x ∈ PB : πTx ≤ π0} and PB

2 := {x ∈ PB : πTx ≥ π0 + 1} (3)

can be described with at most one additional linear inequality, and such an inequal-
ity is called the intersection cut obtained from B and (π, π0).

Our proposal for an intersection cut for the mixed integer conic quadratic set QI

is now the following. Again we consider a maximal choice B of linearly independent
rows {ai}i∈B of the matrix A. We require m ∈ B since it is necessary to include

the mth row of Ax − d in B in a conic quadratic setting for natural reasons. The
choice B leads to the relaxation QB of Q:

QB := {x ∈ Rn : AB · x− dB ∈ L|B|}, (4)

where (AB , dB) is obtained from (A, d) by deleting rows not indexed by B. Given
a choice of split disjunction πTx ≤ π0 ∨πTx ≥ π0 + 1, we will show that the convex
hull conv(QB

1 ∪Q2
B) of the sets:

QB
1 := {x ∈ QB : πTx ≤ π0} and QB

2 := {x ∈ QB : πTx ≥ π0 + 1} (5)

can be described with at most one additional inequality given by a closed form
formula, and we call such an inequality a conic quadratic intersection cut.

We now present our main result: The inequality description of conv(QB
1 ∪QB

2 ).
For simplicity assume in the following that there is only one choice of constraint
set B, i.e., assume the matrix A has full row rank. Let the sets Q1 := {x ∈ Q :
πTx ≤ π0} and Q2 := {x ∈ Q : πTx ≥ π0 + 1} be the points in Q satisfying
πTx ≤ π0 ∨ πTx ≥ π0 + 1. We now give a characterization of conv(Q1 ∪Q2).

We first answer the question: When does πTx ≤ π0 ∨ πTx ≥ π0 + 1 give an
intersection cut for QI , i.e., when do we have conv(Q1 ∪ Q2) 6= Q? The answer
depends on the geometry of the nullspace L := {x ∈ Rn : Ax = 0n} of A and on
the geometry of the affine set A := {x ∈ Rn : Ax = d}, and is as follows.

• (No intersection cut). We have conv(Q1∪Q2) = Q if and only if either π /∈ L⊥

or A is not strictly between the hyperplanes πTx = π0 and πTx = π0 + 1.

To obtain a description of conv(Q1 ∪ Q2) when conv(Q1 ∪ Q2) 6= Q we apply
an affine mapping from Rn to Rm to reduce the problem to the following question:
Given a disjunction δT y ≤ r1∨δT y ≥ r2 on Rm such that the apex 0m of the Lorentz
cone Lm lies strictly between the hyperplanes δT y = r1 and δT y = r2, what is the
inequality description of the convex hull conv(S1 ∪ S2) of the sets

S1 := {y ∈ Lm : δT y ≤ r1} and S2 := {y ∈ Lm : δT y ≥ r2} (6)
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of points in the Lorentz cone Lm satisfying the disjunction δT y ≤ r1 ∨ δT y ≥ r2?
The precise formula for δT y ≤ r1 ∨ δT y ≥ r2 is given in Sect. 2.

There are two types of intersection cuts that may be needed to describe conv(Q1∪
Q2): A linear inequality or a conic quadratic inequality. A linear inequality appears
when either δ or −δ belongs to the Lorentz cone as follows.

• (Linear intersection cut). Suppose conv(Q1 ∪ Q2) 6= Q. If δ ∈ Lm, then
we have conv(Q1 ∪ Q2) = {x ∈ Q : πTx ≥ π0 + 1}, and if −δ ∈ Lm, then
conv(Q1 ∪Q2) = {x ∈ Q : πTx ≤ π0}.

The most interesting case is the following situation where a conic quadratic
inequality is needed to describe conv(Q1 ∪Q2).

• (Conic quadratic intersection cut). If conv(Q1 ∪Q2) 6= Q and ±δ /∈ Lm, then
conv(Q1 ∪Q2) is the set of x ∈ Q such that y := Ax− d satisfies

4 ·r1 ·r2 · (δT y−r1)(δT y−r2)+(r1−r2)2(

m
∑

i=1

y2i −y2m) · (
m
∑

i=1

δ2i − δ2m) ≤ 0 (7)

Observe that (7) is not in conic quadratic form. We present conic quadratic
forms of (7) in Sect. 5. The validity of (7) for S1 ∪ S2 is easy to see: The constant
4r1r2 is negative since r1 < 0 < r2, and for any y ∈ Rm satisfying δT y ≤ r1∨ δT y ≥
r2 we have (δT y − r1)(δT y − r2) ≥ 0. Furthermore, the condition ±δ /∈ Lm gives
∑m

i=1 δ
2
i − δ2m > 0, and finally any y ∈ Lm satisfies

∑m
i=1 y

2
i − y2m ≤ 0.

Intersection cut (7) was also obtained independently by Modaresi et al. [12] for
the special case when: (a) the matrix A is non-singular, (b) the nth row and column
of A are both the nth unit vector, and (c) the split disjunction πTx ≤ π0 ∨ πTx ≥
π0 + 1 has πn = 0. In this case the (transformed) disjunction δT y ≤ r1 ∨ δT y ≥ r2
always has δm = 0, and the hyperplanes δT y = r1 and δT y = r2 are therefore always
parallel to the coordinate axis associated with the last variable ym. Since the last
coordinate is very different from the other coordinates for points in a Lorentz cone,
the geometry becomes substantially more complex when one allows δm 6= 0, and it
is not clear which inequality is needed. This is why we decided to consider Gröbner
bases from algebraic geometry to identify (7). Our approach is inspired by a paper
of Ranestad and Sturmfels [14] on determining the boundary of the convex hull of
a variety.

For mixed integer linear sets intersection cuts and split cuts are equivalent [1].
We give a counterexample in Sect. 6 which shows that this is no longer the case in
a conic quadratic setting.

The remainder of the paper is organized as follows. In Sect. 2 we reduce the
problem of characterizing the set conv(Q1 ∪ Q2) in Rn to the problem of charac-
terizing the set conv(S1 ∪ S2) in Rm. In Sect. 3 we characterize the boundary of
conv(S1∪S2) by using the algebraic geometry software called Singular. We present
our main result in Sect. 4. In Sect. 5 we discuss conic quadratic forms of our conic
quadratic inequality, and finally in Sect. 6 we give an example to show that conic
quadratic split cuts and intersection cuts are not equivalent.

2 Reduction to the main case

We continue studying a mixed integer conic quadratic set QI = {x ∈ Q : xj ∈
Z for i ∈ I} with relaxation Q := {x ∈ Rn : Ax − d ∈ Lm}, where A ∈ Qm×n has
rank(A) = m. The split disjunction πTx ≤ π0 ∨πTx ≥ π0 + 1 is arbitrary and gives
two sets Q1 := {x ∈ Q : πTx ≤ π0} and Q2 := {x ∈ Q : πTx ≥ π0 + 1}.
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The main purpose of this section is to reduce the problem of characterizing
conv(Q1∪Q2) to the problem of characterizing conv(S1∪S2), where S1 := {y ∈ Lm :
δT y ≤ r1} and S2 := {y ∈ Lm : δT y ≥ r2} for some disjunction δT y ≤ r1∨ δT y ≥ r2
on Rm which will be defined below.

We first characterize when no further inequalities are needed to describe conv(Q1∪
Q2). The set L denotes the nullspace of A, and A denotes the affine set A := {x ∈
Rn : Ax = d} = x̄ + L, where x̄ solves Ax = d.

Lemma 2.1 We have conv(Q1 ∪Q2) 6= Q if and only if

(i) π is orthogonal to L, and

(ii) A lies strictly between the hyperplanes πTx = π0 and πTx = π0 + 1.

Proof. Suppose (i) is not satisfied, i.e., π /∈ L⊥. Hence there exists l ∈ L such that
πT l < 0. Clearly conv(Q1 ∪Q2) ⊆ Q. Let z ∈ Q be arbitrary. If πT z /∈]π0, π0 + 1[
then z ∈ conv(Q1 ∪Q2), so we assume πT z ∈]π0, π0 + 1[. Now πT l < 0 implies we
can choose µ1, µ2 > 0 such that z1 := z + µ1l ∈ Q1 and z2 := z − µ2l ∈ Q2. Since
z is on the line between z1 and z2, we get z ∈ conv(Q1 ∪Q2).

Next suppose (ii) is not satisfied. Wlog let z ∈ A satisfy πT z ≤ π0. Clearly
conv(Q1∪Q2) ⊆ Q. Let w ∈ Q be arbitrary. We can assume πTw ∈]π0, π0+1[, since
otherwise w ∈ conv(Q1 ∪Q2). Define r := w − z. We have πT r > 0. Furthermore,
since Az = d we have Ar ∈ Lm, and since Lm is a cone this gives {z + α · r : α ≥
0} ⊆ Q. Also, z ∈ Q1 and πT r > 0 implies {z + α · r : α ≥ 0} ⊆ conv(Q1 ∪ Q2).
Since w is on this halfline, we get w ∈ conv(Q1 ∪Q2).

Finally suppose (i) and (ii) are satisfied. We claim x̄ /∈ conv(Q1∪Q2). Suppose,
for a contradiction, that x̄ ∈ conv(Q1 ∪ Q2). We do not have x̄ ∈ Q1 ∪ Q2 since
πT x̄ ∈]π0, π0 + 1[ by (ii). Hence there exists λ ∈]0, 1[, x1 ∈ Q1 and x2 ∈ Q2 so
that x̄ = λx1 + (1 − λ)x2. Let y1 := Ax1 − d and y2 := Ax2 − d. We have

0m = Ax̄− d = λy1 + (1 − λ)y2, so −y1 = (1−λ)
λ

y2. Since y2 ∈ Lm, (1−λ)
λ

> 0 and
Lm is a cone this gives −y1 ∈  Lm. We now have ±y1 ∈ Lm, and therefore the line
{α ·y1 : α ∈ R} is contained in Lm. Since Lm is pointed, this implies y1 = y2 = 0m.
However, then x1, x2 ∈ A, and since πT z = πT x̄ ∈]π0, π0 + 1[ for all z ∈ A from (i)
and (ii), this is a contradiction. �

We now present the reduction. Define a disjunction δT y ≤ r1 ∨ δT y ≥ r2 on Rm as
follows.

Definition 2.2 (Definition of the disjunction δT y ≤ r1 ∨ δT y ≥ r2)
The vector δ ∈ Rm is the projection of π onto L⊥, i.e., we define δ = (AAT )−1Aπ.
The numbers r1, r2 ∈ R are given by r1 := π0 − δT d and r2 := r1 + 1.

Given a disjunction πTx ≤ π0∨πTx ≥ π0+1, we now argue that a description of
conv(S1 ∪ S2) gives a description of conv(Q1 ∪Q2)(Lemma 2.(iii)). This argument
is standard, but important, and therefore proven in the appendix.

Lemma 2.3 Suppose (π, π0) ∈ Rn+1 satisfies (i) and (ii) of Lemma 1. Then

(i) 0 ∈]r1, r2[ and conv(S1 ∪ S2) 6= Lm,

(ii) Qk = {x ∈ Rn : Ax− d ∈ Sk} for k = 1, 2, and

(iii) conv(Q1 ∪Q2) = {x ∈ Rm : Ax− d ∈ conv(S1 ∪ S2)}.
Observe that Lemma 2.(ii) gives a condition for when a linear inequality suffices

to describe conv(Q1 ∪ Q2). Indeed, since Lm is a self-dual cone, δ ∈ Lm implies
δT z ≥ 0 for all z ∈ Lm. Since r1 < 0 < r2, this gives conv(S1 ∪ S2) = S2 when
δ ∈ Lm. Symmetrically conv(S1 ∪ S2) = S1 when −δ ∈ Lm.
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Corollary 2.4 Suppose (π, π0) ∈ Zn+1 satisfies (i)-(ii) of Lemma 1.

(i) If δ ∈ Lm, then conv(S1 ∪ S2) = S2 and conv(Q1 ∪Q2) = Q2.

(ii) If −δ ∈ Lm, then conv(S1 ∪ S2) = S1 and conv(Q1 ∪Q2) = Q1.

3 Describing a piece of the boundary of the convex

hull

We now describe a part of the boundary of conv(S1 ∪ S2), where S1 and S2 are as
defined in Sect. 2 from a disjunction δTx ≤ r1 ∨ δTx ≥ r2 with (δ, r1, r2) ∈ Rm+2

and r1r2 < 0. This will give the inequality needed to describe conv(S1 ∪ S2). We
assume ±δ /∈ Lm. For simplicity let C := conv(S1∪S2). We consider points x ∈ ∂C
each being a convex combination of points a ∈ S1 and b ∈ S2 maximizing a linear
form h ∈ Rm \ {0m} over C. These points belong to the set B below.

Definition 3.1 Let Fk := {x ∈ Rm :
∑m−1

i=1 x2
i = x2

m ∧ δTx = rk} for k = 1, 2. We
define the set B as follows.

B := {x ∈ Rm : ∃(h, a, b, t) ∈ (Rm \ {0m}) × F1 × F2 × R :

x = ta + (1 − t)b and hTa = hT b

dim(span(h,∇L(a), δ)) ≤ 2 and dim(span(h,∇L(b), δ)) ≤ 2 }.

Here ∇L denotes the gradient of x 7→ x2
m −∑m−1

i=1 x2
i .

Theorem 3.2 Let x ∈ C with r1 < δTx < r2. If x ∈ ∂C then x ∈ B.

Proof. Since r1 < δTx < r2 x must be a convex combination of a point a ∈ S1 and
a point b ∈ S2. By convexity of Lm we may assume that a ∈ H1 and b ∈ H2, where
Hk := {x ∈ Rm : δTx = rk} for k = 1, 2.

Since x is in ∂C, we have a ∈ ∂(Lm ∩ H1) and b ∈ ∂(Lm ∩ H2) in the affine

spaces H1 and H2 respectively. This proves a2m =
∑m−1

i=1 a2i and b2m =
∑m−1

i=1 b2i .
Since x ∈ ∂C and C is convex, there exists an h ∈ Rm \ {0} which as a linear

form attains its maximum over C in x. Moving along a line from x towards a or b
we stay in C. Therefore, by colinearity of a, b and x, we get hT (a− b) = 0.

Finally, consider the projection h̃ of h to the linear space parallel to H1. Since h
attains its maximum over C∩H1 at a, the gradient of a2m−∑m−1

i=1 a2i in the subspace

and h̃ are dependent. Hence dim(span(h,∇L(a), δ)) ≤ 2. A similar argument for b
shows that dim(span(h,∇L(b), δ)) ≤ 2. �

Theorem 3.3 Any point x ∈ B must satisfy the equation
∑m−1

i=1 x2
i = x2

m or

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(

m−1
∑

i=1

δ2i − δ2m)(

m−1
∑

i=1

x2
i − x2

m) = 0. (8)

These are polynomial equations in x with coefficients involving δ, r1 and r2.

Before proving Theorem 3.3, we show how to deduce the above equations for
m = 3 in the computer algebra system Singular [10]. In Singular we type:
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ring r=0,(delta1,delta2,delta3,r1,r2,x1,x2,x3,a1,a2,a3,b1,b2,b3,t,h1,h2,

h3,A1,A2,B1,B2),dp;

poly f1=a1^2+a2^2-a3^2;

poly f2=a1*delta1+a2*delta2+a3*delta3-r1;

poly g1=b1^2+b2^2-b3^2;

poly g2=b1*delta1+b2*delta2+b3*delta3-r2;

poly K1=-h1+A1*diff(f1,a1)+B1*delta1;

poly K2=-h2+A1*diff(f1,a2)+B1*delta2;

poly K3=-h3+A1*diff(f1,a3)+B1*delta3;

poly L1=-h1+A2*diff(g1,b1)+B2*delta1;

poly L2=-h2+A2*diff(g1,b2)+B2*delta2;

poly L3=-h3+A2*diff(g1,b3)+B2*delta3;

poly R=h1*(a1-b1)+h2*(a2-b2)+h3*(a3-b3);

poly X1=x1-t*a1-(1-t)*b1;

poly X2=x2-t*a2-(1-t)*b2;

poly X3=x3-t*a3-(1-t)*b3;

ideal I=f1,f2,g1,g2,K1,K2,K3,L1,L2,L3,R,X1,X2,X3;

option(prot);

LIB "elim.lib";

ideal J=h1,h2,h3;

ideal K=eliminate(sat(I,J)[1],a1*a2*a3*b1*b2*b3*t*h1*h2*h3*A1*A2*B1*B2);

LIB "primdec.lib";

primdecGTZ(K);

This script produces the desired polynomials. We now explain how it works. Each
polynomial in the list

ideal I=f1,f2,g1,g2,K1,K2,K3,L1,L2,L3,R,X1,X2,X3;

encodes a polynomial equation by setting the polynomial equal to zero. These
equations arise from Definition 3.1. For simplicity we strengthen the dimension
conditions to h ∈ span(∇L(a), δ) and h ∈ span(∇L(b), δ)}, respectively, and express
these by introducing the three unknown coefficients of the two linear combinations
as variables A1, B1, A2, B2. In total we form 14 equations.

The ideal I is the infinite set of polynomial consequences of the 14 polynomials
obtained by forming linear combinations of these with polynomials as coefficients.
As a subset of I we find the ideal K ⊆ R[δ1, . . . , δm, x1, . . . , xm, r1, r2] containing
consequences only involving δ, x, r1, and r2. Our computation shows that the ideal
K is a principal ideal, i.e., all its elements are polynomial multiples of a single
polynomial P . The eliminate command computes this polynomial P . The last
line of the script factors P into x2

m −∑m−1
i=1 x2

i and a 37 term polynomial. It is not
obvious that this polynomial gives the formula in Theorem 3.3, but for m = 3 the
formula can easily be expanded and checked in Singular.

We still need to explain the operation sat(I,J) in the script. A priori, the vector
h can always be chosen to be 03, and hence there would be no consequence for x in
terms of δ, r1 and r2. To exclude this we saturate I wrt. the ideal J = 〈h1, h2, h3〉.
We refer the reader to [11] for an introduction to elimination and saturation of
polynomial ideals.

Proof of Theorem 3.3 We substitute δTa for r1 and δT b for r2. It remains to
prove (under the assumption h 6= 0m) that

∑m−1
i=1 x2

i = x2
m or

4(δT a)(δT b)(δTx− δTa)(δTx− δT b) + (δT (a− b))2(

m−1
∑

i=1

δ2i − δ2n)(

m−1
∑

i=1

x2
i − x2

m) = 0

is a consequence of x = ta + (1 − t)b, hTa = hT b, dim(span(h,∇L(a), δ)) ≤ 2,

dim(span(h,∇L(b), δ)) ≤ 2, h 6= 0m,
∑m−1

i=1 a2i − a2m = 0 and
∑m−1

i=1 b2i − b2m = 0.
To simplify we make substitutions and work over the complex numbers C. In

δ and h we multiply the last coordinate by i (where i2 = −1), and in x, a, b we
multiply the last coordinate by −i. With these changes our assumptions become
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• h 6= 0m and h · a = h · b,

• {δ, h, a} and {δ, h, b} are both linearly dependent sets,

• x = ta + (1 − t)b,

• a · a = 0 and b · b = 0.

where for x, y ∈ Cm we let x · y :=
∑m

i=1 xiyi. With this notation we must prove

4(δ · a)(δ · b)(δ · x− δ · a)(δ · x− δ · b) + (δ · (a− b))2(δ · δ)(x · x) = 0. (9)

First assume span(h, δ, a) 6= span(h, δ, b). In this case h and δ are proportional,
implying δ · a = δ · b, which equals δ · x. Equation (9) follows easily.

Suppose now span(h, δ, a) = span(h, δ, b). Then a, b and δ are in the same 2-
dimensional plane. Suppose that δ = ka + lb with k, l ∈ C. We compute the left
hand side of (9):

4((ka + lb) · a)((ka + lb) · b)((ka + lb) · (x− a))((ka + lb) · (x− b))+

((ka + lb) · (a− b))2((ka + lb) · (ka + lb))(x · x)

=4((ka + lb) · a)((ka + lb) · b)((ka + lb) · ((t− 1)(a− b)))((ka + lb) · (t(a− b)))+

((ka + lb) · (a− b))2((ka + lb) · (ka + lb))(x · x)

=((ka + lb) · (a− b))2(4((ka + lb) · a)((ka + lb) · b)(t− 1)t + ((ka + lb) · (ka + lb))(x · x))

=((ka + lb) · (a− b))2(4(lb · a)(ka · b)(t− 1)t + ((2kla · b)(2(ta) · (1 − t)b))) = 0.

In the case δ /∈ span(a, b) we have that a and b are dependent. Wlog x = c · a
for some c ∈ C. Now x · x = (ca) · (ca) = c2(a · a) = c20 = 0. Translated to our

original coordinates, we are in the case where
∑m−1

i=1 x2
i = x2

m. �

When x ∈ B is between the hyperplanes δTx = r1 and δTx = r2 we can exclude
one of the cases of Theorem 3.3.

Lemma 3.4 Suppose x ∈ B, with a and b in Definition 3.1 chosen such that am ≥ 0
and bm ≥ 0. Furthermore suppose r1 < δTx < r2. Then

∑m−1
i=1 x2

i 6= x2
m.

Proof. Consider the degree two polynomial we get by restricting
∑m−1

i=1 x2
i − x2

m to
the line from a through x to b. This polynomial evaluates to zero in a and b. Since
the degree is two it is either the zero polynomial or non-zero between a and b. In
the second case we conclude that

∑m−1
i=1 x2

i 6= x2
m. In the first case, every point

y on the line passing through a and b satisfies
∑m−1

i=1 y2i = y2m. The hypersurface

defined by
∑m−1

i=1 y2i = y2m contains only lines passing through the origin. From the
inequalities am ≥ 0 and bm ≥ 0 it follows that a and b are on the same side of the
origin, contradicting r1r2 < 0, δT a = r1 and δT b = r2. �

4 Characterization of the convex hull

The goal of this section is to deduce Theorem 4.4 below.

Lemma 4.1 Let f ∈ R[x1, . . . , xm] be the left hand side of (8). Let t 7→ a+ bt be a

parametrization of a line. If δT b 6= 0 and b2m >
∑m−1

i=1 b2i then f(a + tb) → −∞ as
t → ±∞.

Proof. The summand 4r1r2(δTx−r1)(δTx−r2) goes to −∞. The second summand

of f is either zero or has the sign of
∑m−1

i=1 b2i − b2m since it eventually will be

dominated by (r1 − r2)2(
∑m−1

i=1 δ2i − δ2m)t2(
∑m−1

i=1 b2i − b2m) . �
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Proposition 4.2 If x ∈ C and r1 < δTx < r2 then

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(
m−1
∑

i=1

δ2i − δ2m)(
m−1
∑

i=1

x2
i − x2

m) ≤ 0. (10)

Proof. Let f ∈ R[x1, . . . , xm] be the polynomial on the left hands side of (10). First
observe that f(0m) > 0. Suppose (10) did not hold for x. Then f(x) > 0. Consider
the line starting at 0m passing through x. On this line we find a point on the
boundary of C. By Theorem 3.2 f has value zero here. Furthermore, by Lemma 4.1
the values of f far from the origin are negative. For a degree-two polynomial this is
a contradiction. (Note that when applying Lemma 4.1 we assume δTx 6= 0. If this
is not true, we perturb x and f cannot be positive there). �

Proposition 4.3 Let x satisfy (10) and r1 < δTx < r2. If xm > 0 then x ∈ C.

Proof. The assumptions imply that the first term of (10) is positive. Since ±δ 6∈ Lm

(10) gives x ∈ Lm. Choose ε > 0 such that f is positive on an ε-ball around the
origin. In an ε-ball around x we choose a point b such that b is in the interior of
Lm and δT b 6= 0. Consider the line x+ tb and the values that f attains on this line.
For t = −1 we are in the ε-ball where f is positive. For t → ±∞ the function goes
to −∞ by Lemma 4.1. For some t0 > 0 we get δT (x + t0b) = ri for i = 1 or i = 2.
Furthermore, the Lorentz inequality is satisfied, so that x+ t0b is in C. As we move
towards t = 0, f will attain value 0 as we pass the boundary of C. After this f
stays positive at least until the xm = 0 hyperplane is reached, where f attains a
positive value on the line. We conclude x ∈ closure(C).

To prove that x ∈ C, suppose this is not the case. Intersect C with {y ∈ Rm :
ym − 1 ≤ xm}. This intersection is compact because the convex hull of a compact
set is compact. We conclude x ∈ C. �

We complete and summarize our result in the following theorem.

Theorem 4.4 Assume xm ≥ 0. Then x ∈ C if and only if x is in Lm and satisfies

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(

m−1
∑

i=1

δ2i − δ2m)(

m−1
∑

i=1

x2
i − x2

m) ≤ 0. (11)

Proof. Suppose x ∈ C. Clearly x ∈ Lm since C ⊆ Lm. If r1 < δTx < r2 then then
(11) follows from Proposition 4.2. If r1 ≥ δTx or δTx ≥ r2, then the first term on
the left hand side of (11) is ≤ 0. The second term is ≤ 0 since x ∈ C ⊆ Lm.

Conversely, suppose x ∈ Lm and (11) is satisfied. If r1 < δTx < r2, then x ∈ C
by Proposition 4.3. If not then x ∈ C by the definition of C. �

5 Conic quadratic representations

We have identified (11) for describing C = conv(S1∪S2). However, this inequality is
not in conic quadratic form. In this section we give conic quadratic representations
of (11). We first consider the special case when δ2 = . . . = δm−1 = 0.

Lemma 5.1 If we assume that δ2 = δ3 = · · · = δm−1 = 0 then

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(
m−1
∑

i=1

δ2i − δ2m)(
m−1
∑

i=1

x2
i − x2

m) =

8



((r1+r2)(δ1x1+δmxm)−2r1r2)2+(r1−r2)2(δ21−δ2m)(

m−1
∑

i=2

x2
i )−(r1−r2)2(δmx1+δ1xm)2.

In particular, if ±δ 6∈ Lm the polynomial is a conic quadratic form with m terms.

The proof of Lemma 5.1 is simply a sequence of equalities, and it is therefore placed
in the appendix. We now give an interpretation of the coefficients in the expression
of Lemma 5.1. For simplicity suppose furthermore that δ1 > 0. Then

• δ1x1 + δmxm = δTx

• δ21 − δ2m =
∑m−1

i=1 δ2i − δ2m

• δmx1 + δ1xm = δm√∑
m−1

i=1
δ2
i







x1

...
xm−1






·







δ1
...

δm−1






+ xm

√

∑m−1
i=1 δ2i

• ∑m−1
i=2 x2

i is the squared norm of the projection of x to span(δ, em)⊥

Except for the third item, these quantities have geometric meaning. All are invariant
under orthonormal linear transformation fixing the last coordinate. Since such
transformations preserve the Lorentz cone, the assumption δ2 = · · · = δm−1 = 0
was made without loss of generality, and in general the coefficients of our quadratic
equation can be obtained from the right hand sides above.

The sum
∑m−1

i=2 x2
i remains a sum of squares after a linear transformation of

coordinates. If δ2, . . . , δm−1 are not all zero, we still want a closed form formula.
Let b2, . . . , bm−1 be an orthogonal basis for span(δ, em)⊥. Then the squared length
of the projection of x to this subspace is given by

(x · b2)2

b2 · b2
+ · · · +

(x · bm−1)2

bm−1 · bm−1
.

We have reached the following generalization of Lemma 5.1

Lemma 5.2 Let b2, . . . , bm−1 be an orthogonal basis for span(δ, em)⊥. Then

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(
m−1
∑

i=1

δ2i − δ2m)(
m−1
∑

i=1

x2
i − x2

m) =

((r1 + r2)δTx− 2r1r2)2 + (r1 − r2)2(δ21 − δ2m)

(

(x · b2)2

b2 · b2
+ · · · +

(x · bm−1)2

bm−1 · bm−1

)

−(r1 − r2)2







δm
√

∑m−1
i=1 δ2i







x1

...
xm−1






·







δ1
...

δm−1






+ xm

√

√

√

√

m−1
∑

i=1

δ2i







2

.

Lemma 5.2 gives a general scheme for obtaining conic quadratic forms of in-
equality (11). We now give a concrete conic quadratic form of (11), which can be
directly computed from the data (δ, r1, r2) ∈ Rm+2. Let xk := (x1, . . . , xk) and
δk = (δ1, . . . , δk) be vectors of the first k coordinates of x and δ. Inequality (11)
can be written as:

((r1 + r2)δTx− 2r1r2)2 − (r1 − r2)2||δm−1||2(xm +
(δm−1)Txm−1

||δm−1||2 δm)2

+ (r1 − r2)2(||δn−1||2 − δ2m)(
m−1
∑

k=2

||δk−1||2
||δk||2 (xk − (δk−1)Txk−1

||δk−1||2 δk)2) ≤ 0. (12)
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6 Conic quadratic intersection cuts and split cuts

In a linear setting split cuts and intersection cuts are equivalent [1]. We now give
an example showing that this is not true in a conic quadratic setting. Consider a
mixed integer conic quadratic set QI := {x ∈ Q : xj ∈ Z for j ∈ I} with continuous
relaxation Q := {x ∈ Rn : Ax − d ∈ Lm}, where the rows of A are not linearly
independent. For a spit disjunction πTx ≤ π0 ∨ πTx ≥ π0 + 1, a split cut for
QI is a valid inequality for conv(Q1 ∪ Q2) with Q1 = {x ∈ Q : πTx ≤ π0} and
Q2 = {x ∈ Q : πTx ≥ π0 + 1} that is not valid for Q.

Example 6.1 The conic quadratic set

Q := {(x, y) ∈ R2 :





1 0
0 1
1 1



 ·
(

x
y

)

−





1
1
1



 ∈ L3} (13)

equals {(x, y) ∈ R2 : 1 ≤ 2xy ∧ y > 0} and is shown in Figure 1. Consider the
relaxation QB of Q obtained from the first and last row of A:

QB := {(x, y) ∈ R2 : (x− 1)2 ≤ (x + y − 1)2 ∧ x + y − 1 ≥ 0}.

The set QB is polyhedral since QB the preimage of the 2-dimensional Lorentz cone
under a linear map. We may think of QB as a relaxation obtained by substituting

L3 with L3 +R ·e2 in (13). By instead choosing L3 +R ·e1 we get the relaxation QB̃

of Q obtained from the last two rows of the matrix defining Q. In general, adding
any line generated by some v ∈ R2 ×{0} to L3 gives a relaxation of Q. Relaxations
for three choices of v are shown in Figure 1. The important observation is that the
boundary of such a relaxation is tangent to the boundary of Q in at most one point.

Now consider any split disjunction (π, π0), and suppose the intersection cut is
a secant line between two points a, b on the curve 1 = 2xy. For an intersection
cut from a relaxation of the above type to give the same cut, the relaxation must
contain both a and b in the boundary, which as argued above is impossible. Conic
quadratic intersection cuts are therefore not always split cuts.

Figure 1: The conic quadratic set Q of (13) and relaxations for v =
(1, 0), (

√

3/4, 1/2) and (
√

1/2,
√

1/2) respectively.
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7 Appendix: Two proofs

Proof of Lemma 2.3 .
Observe that since π ∈ L⊥ by Lemma 1.(i), and since (AT δ − π)⊥L⊥ from the

definition of δ, we have δTAx = πTx for all x ∈ Rn.
(i): Lemma 1.(ii) gives πT z ∈]π0, π0 + 1[ for z ∈ A arbitrary. Therefore 0 =

δT (Az − d) = (πT z − π0) + r1 implies 0 ∈]r1, r2[. This also implies 0m /∈ S1 ∪ S2,
and since 0m is apex of the pointed cone Lm, we have 0m /∈ conv(S1 ∪ S2).

(ii): Wlog we only consider k = 1. If z ∈ Q1, then Az − d ∈ Lm and πT z ≤ π0,
and therefore δT (Az − d) = (πT z − π0) + r1 ≤ r1 which implies z ∈ {x ∈ Rn :
Ax − d ∈ S1}. Conversely, if z ∈ {x ∈ Rn : Ax − d ∈ S1}, then Az − d ∈ Lm and
δT (Az − d) = (πT z − π0) + r1 ≤ r1 which implies z ∈ Q1.

(iii): The inclusion Q1 ∪Q2 ⊆ {x ∈ Rn : Ax− d ∈ conv(S1 ∪ S2)} follows from
(ii), and since {x ∈ Rn : Ax−d ∈ conv(S1∪S2)} is convex, we have conv(Q1∪Q2) ⊆
{x ∈ Rn : Ax− d ∈ conv(S1 ∪ S2)}.

For the other inclusion suppose z ∈ {x ∈ Rn : Ax − d ∈ conv(S1 ∪ S2)}. We

write z = l + l̂ with l ∈ L and l̂ ∈ L⊥, and since Az − d ∈ conv(S1 ∪ S2), we
may write Az − d = λ · y1 + (1 − λ) · y2 for some y1 ∈ S1, y2 ∈ S2 and λ ∈ [0, 1].
Also, since rank(A) = m, the linear map x 7→ Ax maps L⊥ onto Rm, so we can

write y1 = A · l̂1 − d and y2 = A · l̂2 − d, where l̂1, l̂2 ∈ L⊥. Finally the identity
Az = Al̂ = A(λl̂1 + (1 − λ)l̂2) gives A(λl̂1 + (1 − λ)l̂2 − l̂) = 0m which implies

λl̂1 + (1 − λ)l̂2 − l̂ ∈ L ∩ L⊥, and therefore l̂ = λl̂1 + (1 − λ)l̂2.

Define x1 := l + l̂1 and x2 := l + l̂2. We have Ax1 − d = y1 ∈ Lm and
Ax2 − d = y2 ∈ Lm. Furthermore, since y1 ∈ S1, we have δT y1 = δT (Ax1 − d) =
(πTx1 − π0) + r1 ≤ r1 which implies πTx1 ≤ π0. Similarly πTx2 ≥ π0 + 1. Hence
x1 ∈ Q1 and x2 ∈ Q2, and therefore z = λx1 + (1 − λ)x2 ∈ conv(Q1 ∪Q2). �

Proof of Lemma 5.1 We subtract the left hand side from the right hand side and
get:

4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(
m−1
∑

i=1

δ2i − δ2m)(
m−1
∑

i=1

x2
i − x2

m)

−((r1 + r2)(δ1x1 + δmxm) − 2r1r2)2 − (r1 − r2)2(δ21 − δ2m)(

m−1
∑

i=2

x2
i )

+(r1 − r2)2(δmx1 + δ1xm)2

= 4r1r2(δTx− r1)(δTx− r2) + (r1 − r2)2(δ21 − δ2m)(x2
1 − x2

m)

−((r1 + r2)(δ1x1 + δmxm) − 2r1r2)2 + (r1 − r2)2(δmx1 + δ1xm)2

= 4r1r2((δTx)2 − (r1 + r2)(δTx) + r1r2)

+(r1 − r2)2((δ21 − δ2m)(x2
1 − x2

m) + (δmx1 + δ1xm)2)

−((r1 + r2)2(δ1x1 + δmxm)2

+4r21r
2
2 − 4r1r2(r1 + r2)(δ1x1 + δmxm))

= 4r1r2((δTx)2 + r1r2)

+(r1 − r2)2(δ21x
2
1 + δ2mx2

m − δ21x
2
m − δ2mx2

1 + δ2mx2
1 + δ21x

2
m + 2δ1δmx1xm)

−((r1 + r2)2(δ1x1 + δmxm)2 + 4r21r
2
2)

= 4r1r2(δTx)2 + (r1 − r2)2(δ21x
2
1 + δ2mx2

m + 2δ1δmx1xm)

12



−(r1 + r2)2(δ1x1 + δmxm)2

= (r1 − r2)2(δ1x1 + δmxm)2 − (r1 − r2)2(δ1x1 + δmxm)2 = 0.

We notice that δ21 − δ2m > 0 for ±δ 6∈ Lm, which makes all coefficients in our
expression have the desired signs. �
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