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The present note is an exposition of some of the general
"synthetic differential geometry". The style og‘exposition is
that it expresses maps, subobjects, and statemetns in set theoretic
language. As long as one stays inside what Lawvere calls "cartesian
logic", which is essentially negative free (but higher order) logic,
then the maps, subobjects etc. described can be interpreted in any
cartesian closed category with equalizers. So when we for instance
say "ring", we mean "ring object in such a category".

Let A be a commutative ring with 1. Let DcA be the set of
elements of square zero. We say that A is of line type if every

map t: D-A 1is of form

(0) t(d) = b+d.c vdebD
for some unique b and c€A. Clearly b=t(0). We denote the
¢ occurring here by +t'(0). Similarly, if £f: A-A is arbitrary,

and a€A, we define f'(a) to be that unique dement in A such

that

(1) f(a+d) =f(a) +d.f' (a) vdeD

(this element exists uniquely in virtue of A being of line type) .
We call (1) the Taylor expansion of f at a.

To a map f: A-A we have thus associated a new map, f': A-A,



its derivative. It is easy from (1) to prove

(f+g)' = £' + g (f+g) ' =f'eg+f-g’
(fog)' = (f'og) +g' (identity)' =1
(constant)' = 0;

see [5]. In fact proofs of these laws explicitly using elements with
vanishing square were used very early in the history of calculus

(Fermat) , but were later abandoned, perhaps due to

Proposition 1. ©No non-trivial rings in the category of sets

are of lin type.

Proof. If A 1is non-trivial, then D must contain more than

just 0€D (for, otherwise the c occurring in (0) could not be
uniquely determined). So take some &§ €D with &% 0. Define a

function t: D-A by

I
-_—

{ t(8)
t(d)

Il
o

for d=#§6.

By the line type axiom, t is of form +t(d) =b + dscC. Obviously

b=0, so t(d)=dc vdeD. In particular

1 = £(§) = §ec.

Multiplying this equation by §&§, we obtain 6==62-c==9, "(since

§ €D), contradicting the assumption §#0.



The proof hinges on the construction principle *, which has
no place in cartesian logic.

For the rest of this note, A is a fixed ring, assumed to be
of line type.

We note that the uniqueness assertion about ¢ in the line

type notion can be formulated: for any c €A

(ced=0 VdEeED) = (c=0).

This principle, we refer to as "cancelling universally quantified
d's".

Geometrically, D 1is the intersection of the unit circle around
(0,7) €EAxA and the x-axis A x{0}cAxA, and is thus a unity of
the opposites: "curved" and "straight". In fact, for any object M,

a map t: D-»M should be thought of as a tangent vector on M at

the point t(0) €M (Lawvere, [3]). Likewise (ibid.), a vector field
X on M is a law which to each m M associates a tangent vector

X(m,=-): D>M. Thus, a vector field on M 1is a map

X: MxD -» M

satisfying

X(m,0) =m vmeEM

Keeping a de€D fixed, we get a map

(2) X(=,d): M » M

called an infinitesimal transformation belonging to X.




The classical work of Lie on differential equations (see e.g.
[2]) makes wide use of these endomaps of M, which have no place
in modern rigourons treatments.

It is natural to ask whether X(-,d) 1is a bijective map, with

inverse

X(-,-d): M - M.

A condition on M that will guarantee this, and also will
allow us to add tangent vectors at the same point, is the condition

that M is infinitesimally linear in the following sense. For each

natural number n, we let D(n)t_;An be the subset
{(dy,e..pd) EAnIdi-dj =0 Vi,j}

(in particular di==0 vi). For 4i=1,...,n, we have the "i'th

inclusion"

given by
incli(d) = (0,0,...,d,...,0)

(the d in the i'th place).

We say that M is infitesimally linear [6], [8], if for each

n and each n-tuple ti: D->M (i=1,...,n) of tangent vectors at

the same point m €M, there exists a unique 1: D(n) -M with

(3) loincli = t, i=1,...,n.



In particular, if M is infinitesimally linear, and t1, t2
are two tangent vectors at m€M, there is a unique 1l: D(2)-M
with (3) holding (n=2), and we define (t1+t2): D-M to be the

map given by

(t -+t2)(d) = 1(d,d)

1

(note that d €D implies (d,d) €D(2)).

Likewise, if t: D->M 1is a tangent vector and a€?A 1is a

scalar, we define a*t to be the map D-M given by
“(a*t) (d) = t(a-d)

(note that d €D and a €A implies a-+d€D).

It is then easy to prove ([6]1,[8],[9]) that the set of tangent
vectors at any given point m of M becomes an A-module, with the
structures thus defined (one uses D(3) to prove associativity;
the higher D(n)'s are not used).

To prove
(4) X(X(m,d),~-d) = § m,
we shall more generally prove, for (d1,d2) €ED(2)

), d = X(m,d

(5) X(X(m,d1 2) 1-+d2)

(note that (d1,d2) €D(2)=¢d1+d2 €D, because when squaring d1-+d2,
the double product vanishes by assumption) to prove (5), note that

both sides define maps

l: D(2) - M



with l()incli==x(m,—) (i=1,2), and thus are equal, by the
unigqueness assertion in the infinitesimal linearity assumption.

We can add to vector fields X and Y on an infinitesimally
linear object M, by letting (X+Y) (m,-) be the sum (as already
defined) of the two tangent vectors at m, X(m,-) and Y(m,-).

We can also multiply a vectorfield X with a scalar valued function

w: M->A, namely by putting

(p*X) (m,d) = X(m,p(m)-d).

In this way, the set of vector fields on M becomes a module over
the ring of functions M-A.
Recall [6] [7] that an A-module M is called Enclidean if
each t: D->M is of form
t(d) = t(0) +d-v

for some unique v €M, called the principal part of t.

Proposition 2. If M is an Euclidian A-module which is also

infinitesimally linear, then addition of tangent vectors at a given
me€M wusing infinitesimal linearity agrees with the obvious addition

"adding principal parts". Similarly for multiplication by scalars.




be two vectors at mé€M. Their sum, using infihitesemal linearity

is found from 1l: D(2) »M given by

l(d1,d2) - m-+d1 X1-+d2-22

since l()incli==ti. So we have, for all dEe€D

(t1+t2) (d) = 1(d4d,d)

It
=
+
[oR}
<
+
3
<

proving that t1+t2 has principal part v, +v

The last assertion of the Proposition is trivial.

We henceforth assume that A is of line type (hence Euclidean
as an A-module), and infinitesimally linear; and M is assumed to
be an arbitrary infinitesimally linear object.

We proceed to consider Poisson bracket of two vector fields
X and Y on M. For fixed d1€ID and d2€]3, we may consider

the commutator of the two bijective endomaps X(—,d1) and Y(-,d2)

of M. 1In other words, for fixed m, we consider the "circuit"

(6) q:=X(p1—d1) p:=Y(n,d2)

. P ¢

| [

| |

N4 I

Y= (q,-—dz). -?‘.". n::X(m,d1)

m®

(recall: from (4) that X(—,d1)_1==x(—,—d1), and similarly for Y).

For fixed m, the r obtained depends on (d1,d2) €D xD, so that

we have a map

(7) DxD -» M

(d d2) > r

1 '



= 8B =

If d1==0, we have n=m and g=p, so that

r = Y(q—dz) = Y(p,~d,) = n=m

2

the third equality sign by (4) and Y(n,d2)==p. Similarly if d,=0,

2
we get likewise r=m. So the map (7) satisfies the condition for

T in the following requirement on M [6].

Reguirement. For any map T: DxD->M with
(d,0) = 1t(0,d) = 1(0,0) VdeM
there is a unique map +t: DM with

t(d,-d

1 2) €D xD.

= T(d1,d2) V(d1,d2)

(evidently, then, +t(0) =1(0,0)).

We assume henceforth that M satisfies this. Thus the map
described in (7) is of form (d1,d2)-+t(d1-d2) for some unique
t: D->M with t(0) =m. We denote this t [X,Y](m,-). Letting
m vary, we obtain in this way a vector field [X,Y] on M. It

is characterized by

[X,Y] (m,d -d2) = r V(d1,d2) €D x D,

1

r obtained as in (6).

It is easy to prove that [X,¥Y]1=0 and ([X,Y]=-[Y,X]. I
belive that bilinearity and Jacobi identity for the bracket operation
described here can be obtained by reinterpretation of the proofs

for similar facts about the Lie algebra object of a monoid in [6].



Easier proofs exist (using Proposition 2) for the case where M

is a Euclidean module, essentially by using the notion of "direc-
tional derivation anlong a vector field" which we shall discuss in
a moment. However, we do not want to perform "a double-dualization"

by identifying a vector field with a differential operator on a ring

of functions. Thus, the following Theorem, which is essential in
Lie's theory of differential equations, is stated and proved entirely
in geometric terms (no differential operators!)

We shall call a vector field X proper if each X(m,-): D-M
is an injective map (thus we make a positive assumption on X instead
of the classical negative "X(m,-) 1is always non-zero".) The theorem
deals with two vector fields X,Y (with X proper) such that all

circuits are X- trapezia, i.e. have shape

(8) q P

"LJ/

+

b4
»

which to be precise, we take to mean that for each meM and

(d dQ) €D, the r constructed in (6) is of form X{(m,$§) for

1!
some § €D (necessarily unique since X is proper) .
We shall finally assume that A also satisfies the Requirement

above. Then

Theorem;i. Let X,Y be vector-fields on M, with X proper.

Then the following two conditions are equivalent:



i) all circuits of form (6) an X-trapezia, (8).

ii) [X,Y]=p+X for some scalar valued function p: M-A,

Pro_o_g. Assume (i). Let m be fixed, and consider for

(d 1,d ) €D that unique § = (d1,d2) such that

(9) r = X(m,§) .

Ar rgning o }O'V/b\{ map deseribed i (?-) we see ot §(d,0) —B(od)—o Tl\-b*t{vf,
simee by the Requirement for 6( 1,d ) = (d «d ) for some unique

t: D>A. Since t(0) =0, we get, since A is of line type, a

unique b €A such that t(d) =b.d for all deA, so that

(S(d.f;dz) = b-d1-d2 v (d1,d2) €D xD.

Now let m vary, and record the dependence of b on m by writing

b=p(m). Thus we have, for all (d1,d2) €D xD
[X,Y] (m,d1-d2) =r = X(m,b-d1-d2)
= X(m,p (m) -d1od2) = (peX) (m,d1-d2) .
From the uniqueness in the Requirement. Then follows
[X,Y](m,d) = (p¢X)(m,d) for all deD
(and all m). This proves (ii).
The converse dmplication is trivial; if r= (peX) (m,d1-d2) ’

we have r=X(m,p(m)-d1-d2) witnessing that r is of form X(m,S§).



If we call two elements P and m, of M X-neighbours

provided there exists a d €D with

X(m1,d) = My,

then it is easy to see that the conditions of the theorem in turn
are equivalent to: for any d €D, the permutation Y(-,d) preserves
the relation "being X-neighbours". Lie uses the phrase: "X admits
Y"". The phrase "Y permutes X" makes a certain sense too in this
connection, since by integration (which has no place in the present
set up) the X-neighbour-relation passes into the relation being on
the same streamline for the flow generated by X, wo that Y (-,d)

permutes the streamlines of X (possibly reparametrizing them) .

We now discuss directional derivatives. Let X be a vector
field on M, and f: M-V a function with values in a Euclidean
module V (in particular, V might be A itself). Consider for

fixed mMEM the map D-V given by
de £(X(m,d)).

By Euclidean-ness of V, this map is of form
dw f(m) +d-v

for some unique VvE€EV, which we denote X(f)(m). Thus X(f): M-V

is the function characterized by
(10) f(x(m,d)) = f(m) +d<X(£f) (m) YVdED, VmEM

("generalized Taylor formula").



The construction f®& f' previously mentioned is a special

case, namely for X the vector field 2 on na given by
¢(a,d) = a+d.

It is proved in [7], Prop. 1.2 that £-X(f) is A-linear, and

satisfies appropriate evident generalizations of Leibniz-rule:
X(pe£f) " X(@)+£f+@X(f)

whenever f: M->V and ¢: M->A. (The proofs are easy from (10)).

We proceed to investigate how X(f) depends on X. We shal prove

Proposition 4. For any vactor fields X1,X2,Y on M, and

any ? : M> A, we have

(i) (X,+X,) (£) = X, (f) + X, (£)
(ii) (p+X) (£) = @+ (X(f))
(iii) [X,Y](f) = X(Y(f)) -Y(X(f)).

for any f: M-V (V a Euclidean infinitesimally linear module).

Proof (i): Let L: MxD(2) M be defined so that for any

méeM, 1=L(m,-,-}): D(2) »M has



Consider for fixed m M the map h: D(2) »V given by

We then have (for i=1,2) that hcbincli: D->V 1is the tangent
vector at £f(m) with principal part Xi(f)(m); to see this, for

i=2, say

h(inclz(d)) h(0,d) = £(L(m,0,d))

= £(X,(m,d))

2

f(m)-+d-X2(f)(m).

From the unigueness assertion in the statement that V is

infinitesimally linear, it then follows that

f(m)+d

h(d1,d2) T-X1(f)(m)+d2-X2(f)(m)

We have, for all dEe€ED

HX4+X,) (m,d)) f(m) +d- (X +X,) (£) (m) .

1

On the other hand, for all 4 €D,

f(X, +X

1¥%5) (m,d))= £(L(m,d,d)) = h(d,d)

= £(m) +d-X, (£) (m) +d-X, (£) (m)
Comparing these two espressions for f«X1+X2)(m,d)) and cancelling

the universally quantified d, we get (i), as desired. The proof

of (ii) is easier, and omitted. Let us finally prove (iii). For



fixed m,d,,d we consider the circuit (6) (and the elements

‘]I 2I

n,p,q,r described then. We consider f(r) -f(m). First

f(r)

il

£(q) =4, Y (£) (q)

f(p)-d1-X(f)(p)-d2-Y(f)(q)

using generalized Taylor (10) twice. Again using generalized Taylor

(10) twice. (Noting m=X(n,-d and nﬁ=Y(p1—d2) by (4).

1)

£ (m) f(n) -d,*X(f) (n)

1

f(p)—dZ-Y(f)uﬂ - d,-X(f) (n).
Subtracting these two equations, we get

(11) f(r) -£f(m) = d1'{X(f)(n)-X(f)(p)}
+d, = {Y(£) (p) - Y (£) (@)}

= —d1°d2°Y(X(f))(p)-+d1-d2-X(Y(f))(P)

. c_a{".ncrnll'uﬂ_ Ta :-*.W ('10-).
usingyfor the function X(f) and for the function Y(f). Now for

any function g: M-V,

d,+g(n)

|
(o))

N
Q
]

and
dy-g(m) = d,+g(m)
since

dy-g(p) = dz-g(Y(n,dz))

d2°(g(n)+d2 Y(g) (n))

dy,eg(n),



the last term vanishing because d4d%=0. Similarly for the other
equation. Since the terms on the right hand side of (11) occur
with both a d1—factor and a d2-factor we may apply this principle
for the functions g=X(f) and Y(f) to replace the argument p

by, first n, and then m. Thus
(12) f(r) = £f(m) = d1-d2-(X(Y(f))(m)-Y(x(f))(m)).
On the other hand
[X,Y](m,d1-d2) =r
so that
(13) f(r) - f(m) = d1°d2-[X'Y](f)(m)-
comparing (12) and (13), we see that for all (dq,d2) €ED x D
d1-d2-(X(Y(f))(m)-Y(X(f))(m))==d1-d2{X,Y](f)(m)

and cancelling the universally quantified di's, we get (iii)

A final useful classical result about Lie brackets of vector

fields on M
(14) [X,£.¥Y] = £[X,Y] +X(f) .Y,

(where f 1is a scalar valued function) is easy to prove if M is
an Euclidean module and infinitesimally linear. I do not know how

to prove it without the module structure on M.



A function f: M-V (M and V infinitesimally linear,
M satisfying the Requirement, V being a Euclidean module) is
called an integral of the vector field X on M if X(f) =0.

This is equivalent to saying that for any

t: D-> M

which is a vector of the field X, i.e. X(t(0),-)=t, the

function £ is constant on t,

fet=£(t(0)).

Then the level set f-'1

(f(m)) contains the tangent vector X(m,-)
(meaning that X(m,-): D-»M factors through the level set).
An integral f: M-V of X 1is called universal if for any

other integral g: M->W of X

g=wof

for some w: V-W (not necessarily linear. This definition shluld
really be made a local one, but we are not going very far in this
direction anyway. It is reasonable to think of the (level sets of
a universal integral of X as being precisely the streamlines of
X (viewed as unparametriced 1-manifolds). Here we shall use "level

set of universal integral" as definition of "streamline". We then

have



Proposition 5. TIf the proper vector field X admits the
vector field Y, in the sense of the conditions of Theorem 3,
then for each d€D, the infinitesimal transformation Y(-,d):M-M

permutes the streamlines of X.

Proof. We have by assumption

[X,Y] = peX

for some p: M->A. Assume f: M-V 1is a universal integral.

We claim Y(f) is an integral also. For

o
n

peX(£) = (p+X) (£)

[X,Y](£f) = X(Y(£)) - Y (X(f))

X(Y(£)) -Y(0)

X(Y (£)),

using Proposition 4 (ii) and (iii). By universality of f we get

w: V-V with

Y(£) = wof.

1

Now we claim that Y(-,d) takes the level set £ ' (c¢) into

f_1(c+d-w(c)). For, let f(m) =c. Then

£f(Y(m,d)) f(m) +d Y(£f) (m)

f(m) +d-w(f(m))

f(m) +dew(c).



Since Y(-,d) is bijective, we actually get that it takes the
level set f_1(c) onto f-1(c+d-w(c)).

This proves the Proposition. Of course, we have no way presently
of proving existence of universal integrals.

The use of Theorem 3 for differential equations [2] is that
for the case M= the plane AxA, if Y permutes X in the sense
of Theorem 3 or Proposition 5, then the function which to meM
associates the reciprocal of the determinant of (the principal parts

of) the two vectors X(m),Y¥(m) in A2 is an integrating factor

for the differential equation, X(f) =0, meaning that

1

P S
det(X,Y)

is a source—-free vector field, and thus an integral for it and
thus for X can be found by curve integration (the orthogonal
field is a gradient field: its potential function will work) .

Lie states [1] that he found these theorems "by synthetic
considerations"” but found it difficult to write down the proofs
synthetically, whence his articles present mainly analytic proofs
in coordinates. I believe that the above proofs may be closely

related to the synthetic theories of Lie.



(1] s.
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