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Characterization of stacks of principal fibre

bundles

Anders Kock

A prime example of a stack, over the category of topological spaces, say,
is the category of principal G-bundles, where the group G is fixed, but the
base space B varies.

The notion of group, more generally groupoid, makes sense in any ca-
tegory B, and so does the notion of principal fibre bundle, at least if a
sufficiently good class D of effective descent morphisms is specified (e.g. the
class of etale surjections, or of open surjections, for the category of topological
spaces). For a groupoid object GG, in such B, one has the notion of principal
G,-bundle on an object B € B, and these principal bundles form a stack
B(G,) over B. ( Both notions depend on the class D.) The purpose of the
present note is to characterize stacks over B that arise this way: namely as
stacks-in-groupoids P : X — B whose total category X has binary products,
and which admits a sufficiently well-supported object — the latter is also a
notion relative to D. (The first two sections below do not depend on D.)

These two properties are essentially an abstraction of the properties which
were singled out by Deligne and Mumford; but their notion, corresponding
to our “ X has binary products” , namely “representability of the diagonal
X — X xg X” depends essentially on utilizing the 2-dimensional character
of the category of stacks over B, and is much more dependent on cleavage.
Our theory is entirely in 1-dimensional category theory.

We are not claiming much originality; the results are, in one or the other
category, more or less known (possibly except the last Section, whence the
title of the Note). I want to acknowledge discussions over the years with Ieke
Moerdijk, where I learned about the ubiquity of principal bundles. Also, I
acknowledge inspiration from Dorette Pronk’s Thesis, [4].

Finally, I want to express my thanks to the Institut Mittag-Leffler, where
the present work was carried out.



1 Fibrations

Recall that for any functor P : X — B, an arrow f : Y — X in X is called
cartesian (w.r. to P) if it has the following universal property: for any arrow
g : Z — X and any factorization of P(g) over P(f), P(g) = P(f) o u, there
exists a unique h : Z — Y with P(h) = u and g = f o h, as displayed in the
diagram!:

The functor P is called a fibration if for every u : J — I in B and every
X € X with P(X) = I, there exists a cartesian arrow f : Y — X with
P(f) = u (called a cartesian lift of u with codomain X).

One denotes by X; the category of those objects and arrows in X which
by P go to I, respectively to the identity arrow on I; such arrows are called
vertical, over I. It is easy to see that an arrow which is both vertical and
cartesian is an isomorphism. More globally, one has the following well known
and easy

Proposition 1 For a fibration P : X — B, the following two conditions are
equivalent:

1. All arrows in X are cartesian

2. All categories Xy are groupoids
(i.e., all vertical arrows are invertible).

LAll diagrams are made with Paul Taylor’s package.



Fibrations with the equivalent properties of the Proposition are called
fibrations-in-groupoids or, slightly misleadingly, just groupoids (cf. [6] or
[2] for this latter terminology; we are not adopting this wide use of the
word ’groupoid’). In this note, we are mainly concerned with fibrations-in-
groupoids.

Some of the notions we consider are relevant also for general fibrations,
but then the word cartesian should be inserted at various places; for fibrations
in groupoids, the word has no function, since all arrows are cartesian anyway.

We shall encounter not only lifts of individual arrows, but simultaneous
lift of, say, simplicial diagrams. For simplicity, consider a diagram in the
base category B consisting of two parallel arrows J — I , and consider an
object X in X;. Suppose we take a cartesian lift with codomain X of each
of the two parallel arrows, then we have a situation as displayed with full
arrows in

Y;
1) g1
X
92
Y,
h
J I
fa

where g; is a cartesian lift of f;. There is no privileged vertical comparison
map (dotted arrow) since the g;’s are lifts of different arrows in the base.
So to provide a vertical map, as displayed, is to provide a structure to the
situation. Note that no vertical map can make the triangle commute unless
fi = fo- We may replace g, by the composite go o ¢, and get another lift of
fo with codomain X, but now with the same domain Y; as ¢g; has; i.e. we
get a parallel lift. The moral is: to give a parallel lift of parallel arrows is



to provide a structure; in fact, descent data, as we shall meet it, will here
be exhibited precisely in terms of parallel lift of a parallel pair. — Similarly
for more elaborate diagrams in the base. In fact, descent data is better
exhibited as simplicial lift of a simplicial diagram, then the cocycle condition
is automatically taken care of.

Let P : X — B be a (general) fibration. Given an arrow u : J — [ in B.
If one for each X € X; chooses a cartesian lift of u with codomain X, and
denotes the domain of the chosen arrow u* X, it is a standard consequence of
the universal property of cartesian arrows that u* extends to a functor u* :
X; — X;. Sometimes, fibrations are presented in terms of these “transition
functors” u*, and collectively they form a “pseudofunctor” from B to the
category of categories, but we shall nor use this viewpoint here.

The following is an important fact - we refer to [5], Theorem 8.3, or [3],
B.1.4.1, for a proof.

Theorem 1 Assume P : X — B is a fibration, and that B has pull-backs.
Then the following are equivalent:

1. X has, and P preserves, pull-backs.

2. each X has pull-backs, and all transition functors u* : X; — X
preserve pull-backs.

Since any groupoid has pull-backs, and any functor between groupoids
preserves them, it follows that if B has pull-backs, and P : X — B is a
fibration in groupoids, then X has, and P preserves pull-backs. But X may
have some finite limits which are not preserved by P; in fact, our main
concern here will be binary products in X, and they will only in trivial cases
be preserved. Also, the individual groupoids X; will of course not have
binary products either, unless they are trivial.

2 Groupoids and their actions

In the following, B denotes a category with pull-backs. If I € B, we shall

say “I is a “set” ”. Recall that a groupoid in B may be presented in terms of
its nerve G, with Go = “set” of objects, G; = “set” of arrows, Gy = “set”
of composable pairs, etc.; jointly, the G;’s form a simplicial “set”
do dO
.. Gy G, Gy
d2 dl



with dy and d; : G; — Gy domain- and codomain-formation, etc. The
degeneracies like sy : Gy — G pick out identity maps, they are nor exhibited
in the figure, in fact, we will often exhibit G, just by the lowest part G; = Gy.
(The higher G;’s appear as pull-backs, e.g. Go = G1 Xg, G1.)

A characteristic property of groupoids (rather than just categories) is
that all commutative squares expressing simplicial identities among the face
operators are in fact pull-back squares. For instance, the simplicial identity
diod; = djody (“the codomain of a composite is the codomain of the second
of the two arrows”) is a pull-back, because for two arrows « and  with
common codomain, there is a unique composable pair, whose composite is
a and whose second component is 8, namely (87! o a, 8) (composing from
right to left !).

A groupoid is an equivalence relation if dy, d; : G1 — Gg are jointly mono.

An action by a groupoid G, on Fy — Gy may be exhibited in simplicial
terms as

do
[} [ J EO
01
| (075} (7)) (1)
do
L] G1 GO
dy

where each of the squares (with indices matching) is a pull-back square. Since
pull-backs of pull-backs are pull-backs, it follows that the commuting squares
expressing the simplicial identities in the upper row are pull-backs, and so
the upper row FE, is a groupoid in its own right, called the action groupoid
of the action. In fact, by drawing suitable boxes with three sides being pull-
backs to conclude that so is the fourth, using the familiar pasting properties
of pull-back diagrams, one may formulate matters more completely:

Proposition 2 Let f, : E, — G, be a simplicial map, (as exhibited partially
in (1) above), and assume that Go is a groupoid. Then the following are
equivalent:

1) all matching squares in (1) are pull-backs

2) one (hence both) of the two squares in the right hand part of (1) are
pull-backs, and E, is a groupoid

3) fo: Ee — G, is an action groupoid.



The way to reconstruct a right action from this simplicial data is: given
e € Ey and g € G with a(e) = di(g); then since the lower square with the
d; is a pull back, there is a unique a in the upper left corner with é;(a) = e
and aq(a) = g; then d(a) goes by a to do(g) and may be considered the
effect of acting by ¢g on e. One could of course equally have reconstructed a
left action.

A functor between groupoids is, in simplicial terms, just a simplicial map
between their nerves. So an action groupoid comes equipped with a functor
to the groupoid that acts, but a functor with the special property that all the
squares (as exhibited in the diagram above) are pull-backs. Given a functor
FE, — G, with this property, we say that it exhibits F, as an action groupoid
over (,.

We say that the action is principal homogeneous if the action groupoid is
an equivalence relation.

It is easy to see that if G, is an equivalence relation, then so is also any
action groupoid FE, for any G,-action. In other words, any action by an
equivalence relation is automatically principal homogeneous.

3 Descent, and principal bundles

From now, the notions and results depend on the choice of a class D of
“good epis” in the category B. In an exact category (in the sense of Barr;
“effective regular” in [3] A.1.3), e.g. a topos, one could take all regular epis,
in topological spaces one could take the class of open surjections, or the class
of surjections that are local homeomorphisms — this is the classical choice.
In order not to go into technicalities, we present axiomatically the properties
we need of D. There may be some redundancy in this list of Axioms.

The D-Axioms

1. All ¢ € D are regular epis (coequalizer of their kernel pair).

2. The pull-back of a ¢ € D is again in D

3. If G; = Gy is an equivalence relation, with one (hence both) of the
exhibited maps in D, then the coequalizer exists and is in D.

4. (The descent property). If f, : E, — G, is an action groupoid, and
G, (and hence E,) is an equivalence relation, with structural maps in D, as



described in 3., then the resulting right hand square in the diagram

E1 EO [ ]
fi fo f
Gl G() ;

is a pull-back (where the two exhibited horizontal maps are the respective
coequalizers, and where the dotted arrow is the unique one making the square
commute).

5. If three sides in a pull-back square are in D, then so is the fourth.

6. Pulling back along an epi in D reflects the property of being an iso-
morphism.

It is moderately easy to prove (using Axiom 2 and 6)

Lemma 1 Consider a commutative diagram

@@ «—— O
@@ +— O

B

with 8 € D. If the total diagram and the left hand square are pull-backs,
them so is the right hand square. Also, pulling back along a B € D refiects
the property of being a pull-back square.

We consider a principal homogeneous action £, — G, by a groupoid G,.
If the equivalence relation FE, is effective, with quotient 3 : Fy — B, say,
(and that will be the case if the structural map dy : G; — Gy is in D), the
principal homogeneous action by the groupoid G, gives rise to a principal
G.-bundle on B, by which one means a diagram like (1) but augmented by
B : Ey — B, and such that the augmented top row is exact: [ is coequalizer
of d¢, 41, which in turn is kernel pair for 5.



Let u : B' — B be amap in B, and let E’, 8, &/, resp. E, 3, a be principal
G, bundles on B’ and B, respectively. A morphism of principal bundles,
above u is then given by a map f : £/ — E making the square

g .p
f u (2)
Ey 3 B

commutative, and commuting with the action of GG,; the latter condition can
be expressed by saying that f extends to a simplicial map from the row to
the left of £’ to the row to the left of E. Since the maps from these rows to
the G,-row form pull-back squares with the d;’s, and since the commutaive
squares expressing the simplicial identities in the £’ as well as in the E-rows
are pull-backs, it follows that even the commutative square (2) is a pull-back,
provided £ is in D, which in turn will follow if we assume that dy : G; — G,
is a D epi.

We let X denote the category of principal G,-bundles, with respect to
the class D; the functor P : X — B associates to such a GG,-bundle

E B

Go

the “set” B. The following is then well known, and, as mentioned in the
introduction, a main example for the notion of stack.

Proposition 3 Assume that the groupoid G, is a D-groupoid. Then the
functor P : X — B is a fibration, in fact a fibration-in-groupoids.

The last assertion is essentially the assertion that the square exhibited in
(2) above is a pull-back, and therefore easily seen to be a cartesian morphism
over u; thus all morphisms are cartesian. (Equivalently, by Proposition 1, a
morphism of principal bundles over the same base object B is necessarily an
isomorphism).



4 Stacks of principal bundles

Recall that a stack is a fibered category P : X — B with a descent prop-
erty with respect to some covering notion in B (which has to be specified
for the notion of stack to make sense). In our case, we shall consider the
covering notion given by a class D of “descent” epis. Also, we shall only
consider stacks-in-groupoids. We shall simply say stack to mean a fibration
in groupoids which has the descent property with respect to the class D.

We now prove that for a D-groupoid G,, the fibered category P : X — B
of principal G,-bundles is a stack with respect to the coverings given by D.
The non-trivial part is to show that for 8 : By — B_; a D-epi, the functor
Xp_, = Desc(p) is essentially surjective on objects.

So let B, be the (nerve of) the kernel pair of 5, and let there be given a
simplicial object E, of principal G, bundles, mapping by P : X — B to B,.
We then have a bisimplicial diagram, partly exhibited by the full arrows in

Ej o J— - B,

Ve
Ey Ey e - FE
Bl BO Bil

Each of the columns (not, yet, the rightmost one) are the (nerves of) the var-
ious action groupoids; together they constitute the various principal bundles
in the simplicial set of that in turn constitutes a descent datum in X. And,
being principal bundles, they come with an augmentation (quotient map) to
their respective base spaces, E, — B,.

The FE-objects of the rightmost column are produced using that £ has
the descent property assumed for the class D. So the map Fy — E_1, as well
as E; — El,, etc. are therefore coequalizers. By the pull-back property in
Axiom 4 for the class D, all squares ending in  in the right hand column
are pullbacks, hence so are all matching squares in this column. The arrows
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in the rightmost column satisfy the simplial identities, since the ones in the
second but last column do, and the maps E} — E°, are epimorphisms.
Except for the rightmost one, all columns (stripped of their augmentations
to the B;’s), are (nerves of) action groupoids for G,-actions, and therefore
they all are equipped with “structural” functors ¢, (simplicial maps) to (the
nerve of) G,, in a way compatible with with the horizontal maps between
the E’s. By the coequalizer property of the Ej — E’,, the individual maps
of the structural functors produce maps q;- : B’ | — G}, and evidently these
g;’s form a simplicial map. From Lemma 1 follows that the squares from the
rightmost column to the nerve of G, are pull-backs, and from Proposition
2 then follows that the maps ¢’ make the right hand column into an action
groupoid for G,. So the right hand column is a groupoid (in fact a D-
groupoid, since G, is); but it is even the kernel pair groupoid of the map e.
For, pulling it back along /3 yields the column above By, which is the kernel
pair of Ey — By, but by Lemma 1, pulling back along the D-epi g reflects
the property of being a pull-back (hence of being a kernel pair). Finally, €
is the coequalizer of the vertical maps above it; for, the coequalizer exists in
any case by D-Axiom 3. Then the comparison map from this coequalizer to
€ pulls back along S to an isomorphism, hence is an isomorphism.

5 Binary products in BG,

Recall that the total category X of a fibration X — B always has pull-backs
(assuming, as we do throughout, that B does, and that the fibration is a
fibration in groupoids). What about other finite limits? We shall prove

Proposition 4 Let G, be a D-groupoid in B. Then the Category BG, of
principal Go-bundles has binary products.

Note: only in trivial cases will there be a terminal object, see below. So the
word “binary” cannot be replaced by “finite”. Also, only in trivial cases will
the functor P : BG, — B preserve the binary products.

Proof. The way we have set things up, there is hardly anything to prove.
A principal bundle is an action groupoid over G,, equipped with an “exact”
augmentation. The product of two such groupoids is just taken to be their
pull-back over GG,. It is clear that the pull-back of two action groupoids over
(G, is again an action groupoid over G,. We just have to make sure that this
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pull-back groupoid aquires an augmentation, suitably compatible with the
given ones.

In more detail, let the given principal bundles be £, — G, and F, —
G, respectively, and with augmentations (quotient maps) Ey — FE_; and
Fy — F_q, respectively. Let H, := E, Xqg, F,. Then since F, — G, is
an action groupoid, then so is its pull-back, H, — FE,, and since E, is an
equivalence relation, then so is H,, and since G, is a D-groupoid, then so is
H,. But an equivalence relation whose structural maps are in D is an effective
equivalence relation, with quotient map in D, by the third D-axiom. Denote
this quotient map Hy — H_;. Since H, — F, is an action groupoid, and F,
is an effective D-equivalence relation, it follows from the fourth (descent) D-
axiom that H, also is effective and that the quotient map Hy — H_; fits into
a pull-back square with £y — E_;. Similarly for H, — F, and the resulting
H_; — F_;. So we have constructed a principal GG,-bundle on the base space
H_1, and equipped with projections to the two given principal bundles (on
the base spaces E | and F' i, respectively). Its universal property is almost
immediate from the universal property of H, = E, X, F, in the category of
groupoids over G,.

If there is a terminal object in BG,, it has to be the identity map on G,,
and if that is a principal bundle, G, is an effective equivalence relation with
quotient map Gy — G'_; in D, and the fibration BG, is then equivalent to
the domain-formation B/G_; — B, essentially by the descent property of
GO — G_l.

Among the objects in BG,, there is a particular important one, called
Dec(@G), (following Illusie, Duskin,...); we exhibit it simplicially:

dq dq

G3 G2 - > Gl .................. > GO
do

G2 Gl GO

where the full arrows form an action groupoid over (G,, and the dotted one
is the augmentation witnessing that the top line is a principal G,-bundle
with base Go. The fact that the squares are pull-backs follow because the
squares representing the simplicial identities in the (nerve of) a groupoid are
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pull-backs, and for the same reason the top line is itself a groupoid. Also, for
the same reason again, the augmentation (dotted arrow) has the top line as
its kernel pair. Finally, the fact that the augmentation is coequalizer of this
kernel pair follows because it is a D epi, by assumption on G,.

A special property which Dec(G) has, as an object in BG,, is that it is
an atlas object, in the sense of the following definition. We assume D is a
class of descent epis, i.e. satisfying the D-axioms in Section 3.

Definition 1 Let P : X — B be a fibration in groupoids. An object U € X
s called an atlas if for every X € X, the binary product X X U exists in X,
and the projection X x U — X goes to a D-epi by P.

One half of the reason for the definition is, as we claimed,

Proposition 5 If G, is a D-groupoid, then Dec(QG) is an atlas in the fibered
category BG, — B.

Proof. Given a principal G,-bundle F, — G,, with augmentation (quotient)
Ey — E_1, say. The projection map 7, from E, Xg, Dec(G) to E, has for
its lowest dimensional part (dimension 0 and —1) the square

E() XGO G1 °
Yo V-1
E, E .

and this square is a pull-back diagram, for descent reasons encountered sev-
eral times. Since 7 is a D-epi (it comes about by pulling back dy : G1 — Gy),
we have that three of the maps in the displayed pull-back squares are D-epis,
hence so is the fourth v_;. But applying P : BG, — B to 7, gives v_;.

6 Characterization of stacks of principal bun-
dles

We fix a base category B with pull-backs, and a class D of descent epis, i.e.,
satisfying the axioms mentioned in Section 3. With respect to this class, we
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have the notion of stack over B. We know already from the previous section
that if G, is a D-groupoid in B, then the category of its principal bundles is a
stack over B, which has binary products, as well as an atlas. But conversely,
we have

Theorem 2 Let X — B be a fibration in groupoids, and assume that the to-
tal category X has binary products, as well as an atlas. Then X is equivalent
(as a category fibered over B) to a stack of principal Go-bundles, for some
D-groupoid G, in B.

Proof. Let U be an atlas. We have the following groupoid U, in X
U,

LU XxUXxU—7UXxU

i.e. U, = U™, and the simplicial d;’s are just the various maps arising from
the projections. In set-theoretic terms, U, is the codiscrete groupoid on the
“set” U of objects. Since P preserves pull-backs, it follows that P(U,) is
a groupoid in B, which is to be our G., Gy = P(U), G; = P(U x U), etc.
Furthermore, if X € X, we have a “principal U, bundle” in X, namely X xU,
more precisely, X x U™, with the projections to the U™’s as action groupoid
functor to the groupoid U,, and the projection X x U — X as augmentation.
We put the word “principal bundle” in quotation marks, because we don’t
have such notion in X, because we don’t there have a class of descent epis.
But precisely the facts that U is an atlas, and that P preserves pull-backs
give that P takes this “principal bundle” into a genuine principal bundle,
(over the groupoid P(U,) = G.,, and with respect to the class D in B). Thus
we have a functor X — P(X x U — U) from X to BG,. We shall prove
that this functor is an equivalence. We produce a quasi-inverse, and not
surprisingly, this quasi-inverse is going to involve some choices, here in the
form of some choice (cleavage) of cartesian arrows in X.
So we suppose a principal G,-bundle F, given, partially displayed in

Ey Ey E_,

(3)

G, Go

This is a principal bundle on the base object E_;. To produce an object
in Xg_,, we note that we have a simplicial object U, in X over G, (this is
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how we constructed the latter). Choosing a lift of Fy — G with codomain
U, say Xg — U, and choosing a simplicial lift of £, — G; with codomain
UxU = U, say X; — U; etc., we get by utilizing the universal property of
cartesian arrows a simplicial lift of the whole diagram (3). The part of this
lift which is over the E-part of the diagram can be seen as descent data on the
object X,. We have thus constructed a functor from the category (groupoid)
of principal G,-bundles on base object E_;, to the category of descent data
for descent in X along Ey — E_;. But since X was assumed to be a stack
over B, the category of such descent data is equivalent to Xp ,. Thus we
get a functor from principal G,- bundles on base object E_; to the fibre of
X above E_1, providing a (fibrewise) quasi-inverse to the (more canonical)
functor from X to BG,. It is easy to see that the processes described are
mutually inverse, up to isomorphism.

Fine Moduli Spaces. We conclude with a remark about the possibility of
a terminal object in the total category X of a stack P : X — B in groupoids.
We already saw that if X satisfy the conditions of the Theorem above, then
this can only happen in the trivial case where X is equivalent to B/B. But if
we don’t assume binary products or an “atlas” object, then a terminal object
in X does not force triviality; rather, this is an abstraction of the situation
where there is a “fine moduli space for the stack”. It is easy to see that for
any object U € X, we have a fibration of the slice category X /U over B,
and this category has “quasi discrete” fibres, i.e., the fibres are equivalent to
a discrete categories; in fact

(X/U);r = Homg (I, P(U))

is an equivalence of the fibre with a discrete category, namely with the set
Homg(I, P(U). If now U happens to be terminal in X, we have equivalences

X[ ~ (X/U)] ~ HomB(I,P(U))

So one may consider P(U) as a fine moduli space for X : there is a bijective
correspondence between isomorphism classes of X-objects above I, and the
set of maps from I into the moduli space.

As an example from outside algebraic geometry: Let B be an elementary
topos, and let X have as objects all monomorphisms, and as arrows are pull-
back squares, with monos in the left and right end. For P : X — P is
codomain-formation. Then X has a terminal object, namely true : 1 — €.
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So () is a fine moduli space for the notion of monic map. Note that this
viewpoint on the classifying property of 2 in one respect is simpler than
the one “€) as a subobject classifier”; for, with this latter viewpoint one
first has to collect a proper class of monomorphisms into one subobject. Set
theoretically, the latter procedure means that one is considering a set (the
set of subobjects) whose elements are proper classes. (I think this point has
been made by Benabou.)
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