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Preface

It is a striking fact that differential calculus exists not only in analysis (based on
the real numbers R), but also in algebraic geometry, where no limit processes are
available. In algebraic geometry, one rather uses the idea of nilpotent elements in
the “affine line” R; they act as infinitesimals. (Recall that an element x in a ring R
is called nilpotent if x* = 0 for suitable non-negative integer k.)

Synthetic differential geometry (SDG) is an axiomatic theory, based on such
nilpotent infinitesimals. It can be proved, via topos theory, that the axiomatics
covers both the differential-geometric notions of algebraic geometry and those of
calculus.

I shall provide a glimpse of this synthetic method, by discussing its application
to two particular types of differential-geometric structure, namely that of affine
connection and of midpoint formation.

I shall not go much into the foundations of SDG, whose core is the so-called
KL! axiom scheme. This is a very strong kind of axiomatics; in fact, a salient
feature of it is: it is inconsistent — if you allow yourself the luxury of reasoning
with so-called classical logic, i.e. use the “law of excluded middle”, “proof by
contradiction”, etc. Rather, in SDG, one uses a weaker kind of logic, often called
“constructive” or “intuitionist”. Note the evident logical fact that there is a trade-
off: with a weaker logic, stronger axiom systems become consistent. For the SDG
axiomatics, it follows for instance that any function from the number line to itself
is infinitely often differentiable (smooth); a very useful simplifying feature in dif-
ferential geometry — but incompatible with the law of excluded middle, which
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allows you to construct the non-smooth function

f) = {1 ifx=0,

0 if not

1 Nilpotents, and neighbours

Nilpotent elements on the number line serve as infinitesimals?, in a sense which is
“forbidden” when the number line is R. Nilpotent infinitesimals come in a precise
hierachy, since

*=0 implies x!'=0.

The method of SDG combines the “nilpotency” ideas from algebraic geom-
etry, with category theory, and categorical logic: category theory has provided a
sense by which reasoning in (constructive) naive set theory is sound for geometric
reasoning. So the following is formulated in such naive set theoretic terms.

We plunge directly into the geometry of infinitesimals (in the “nilpotency”
sense): let us denote by D C R the set of x € R with x% = 0 (the “first order
infinitesimals”), more generally, let D; C R be the set of kth order infinitesimals,
meaning the set of x € R with xX¥*! = 0. (So D = D;.) The basic instance of the KL
axiom scheme says that any map D; — R extends uniquely to a polynomial map
R — R of degree < k. Thus, given any map f : R — R, the restriction of f to Dy
extends uniquely to a polynomial map of degree < k, the kth Taylor polynomial
of fatO.

For x and y in R, we say that x and y are kth order neighbours if x —y € Dy,
and we write x ~; y. It is clear that ~ is a reflexive and symmetric relation. It
is not transitive. For instance, if x € D and y € D, then x+y € D,, by binomial
expansion of (x+y)3; but we cannot conclude x+y € D. Sox~jyandy~j z
imply x ~» z, and similarly for higher k.

We now turn to the (first order) neighbour relations in the coordinate plane
R?. It is, in analogy with the 1-dimensional case, defined in terms of a subset
D(2) C R?; we put

D(2) = {(x1,%) € RxR|x{ =0,x3 = 0,x; -x = 0};

we define x ~ y if x —y € D(2), where x = (x1,x2) and y = (y1,y2). So D(2) C
D x D. Similarly for D(n) C R", and the resulting first order neighbour relation
on the higher “coordinate vector spaces” R".

2they are not to be compared to the infinitesimals of non-standard analysis
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The following is a consequence of the KL axiom scheme:

Theorem 1.1 Any map f : R* — R™ preserves the kth order neighbour relation,

x~yy implies  f(x)~ f(y).

Proof sketch for n =2, m = 1, for the first order neighbour relation ~. It suffices
to see that x ~; 0 implies f(x) ~; f(0), i.e to prove that x € D(2) implies f(x) —
f(0) € D. Now from a suitable version of the KL axiom scheme follows that on
D(2), f agrees with a unique affine function 7} f : R> — R, so

f(x) = f(0) = a1x1 + azxs.

Squaring the right hand side here yields 0, since not only x; € D and x, € D, but
also x; -xp = 0. So f(x) — f(0) € D.

From the Theorem follows that the relation ~; on R" is coordinate free, i.e. is
a truly geometric notion: any re-coordinatization of R" (by any map, not just by a
linear or affine one) preserves the relation ~y.

For suitable definition of what an open subsets of R" is, and for a suitable def-
inition of “n-dimensional manifold” (something that locally can be coordinatized
with open subsets of R"), one concludes that on any manifold, there are canonical
reflexive symmetric relations ~: they may be defined in terms of a local coordi-
natization, but, by the Theorem, are independent of the coordinatization chosen.

Any map between manifolds preserves the relations ~y.

We shall mainly be interested in the first order neighbour relation ~1, which
we shall also write just ~. In Section 3, we study aspects of the second order
neighbour relation ~;.

So for a manifold M, we have a subset M( 1) C M x M, the “first neighbourhood
of the diagonal”, consisting of (x,y) € M x M with x ~ y. It was in terms of this
“scheme” M|, that algebraic geometers in the 1950 gave nilpotent infinitesimals
a rigourous role in geometry. Note that for M = R", we have M}y = M x D(n), by
the map (x,y) — (x,x—y).

Let us consider some notions from “infinitesimal geometry” which can be
expressed in terms of the first order neighbour relation ~ on an arbitrary manifold
M. Given three points x,y,z in M. If x ~ y and x ~ z we call the triple (x,y,z) a 2-
whisker at x (sometimes: an infinitesimal 2-whisker, for emphasis); since ~ is not



transitive, we cannot in general conclude that y ~ z; if y happens to be ~ z, we call
the triple (x,y,z) a 2-simplex (sometimes an infinitesimal 2-simplex). Similarly for
k-whiskers and k-simplices. A k-simplex is thus a k+ 1-tuple of mutual neighbour
points. The k-simplices form, as k ranges, a simplicial complex, which in fact
contains the information of differential forms, and the de Rham complex of M,
see [2], [6], [11, [7].

(When we say that (xg,x,...,x;) is a k-whisker, we mean to say that it is a k-
whisker at xg, i.e. that xg ~ x; for all i = 1,. .., k. On the other hand, in a simplex,
none of the points have a special status.)

Given a k-whisker (xo,...,x;) in M. If U is an open subset of M containing
X, it will also contain the other x;s, and if U is coordinatized by R", we may use
coordinates to define the affine combination

k
Y i, (1.1)
i=0

(where Y t; = 1; recall that this is the condition that a linear combination deserves
the name of affine combination). The affine combination (1.1) can again be proved
to belong to U, and thus it defines a point in M. The point thus obtained has in
general not a good geometric significance, since it will depend on the coordinati-
zation chosen. However (cf. [5], [7] 2.1), it does, if the whisker is a simplex:

Theorem 1.2 Let (xo,...,x;) be a k-simplex in M. Then the affine combination
(1.1) is independent of the coordinatization used to define it. All the points that
arise in this way are mutual neigbours. And any map to another manifold M’
preserves such combinations.

Proof sketch. This is much in the spirit of the proof of Theorem 1.1: it suffices
to see that any map R" — R (not just a linear or affine one) preserves affine
combinations of mutual neighbour points. This follows by considering a suitable
first Taylor polynomial of f (expand from xp), and using the following purely
algebraic fact: If x,...,x; are in D(n), then any linear combination of them will
again be in D(n) provided the x;s are mutual neighbours.

Examples. If x ~ y in a manifold (so they form a 1-simplex), we have the affine
combinations “midpoint of x and y”, and “reflection of x in y”,

%x—i— %y and 2y—ux,



respectively. If x,y, z form a 2-simplex, we may form the affine combination u :=
y —x+ z; geometrically, it means completing the simplex into a parallelogram by
adjoining the point u. Here is the relevant picture:

y—Xx+2

(1.2)

(All four points here are neighbours, not just those that are connected by lines in
the figure.) The u thus constructed will be a neighbour of each of the three given
points. Therefore, we may form the midpoint of x and u, and also we may form
the midpoint of y and z; these two midpoints will agree, because they do so in R",
from where the construction of affine combinations was imported.

Remark.If x,y,z and u are as above, and if x,y, and z belong to a subset S C M
given as a zero set of a function f : M — R, then so does u =y —x+z; for, f
preserves this affine combination.

2 Affine connections

If x,y,z form a 2-whisker at x (so x ~ y and x ~ z), we cannot canonically form a
parallelogram as in (1.2); rather, parallelogram formation is an added structure:

Definition 2.1 An affine connection on a manifold M is a law A which to any 2-
whisker x,y,z in M associates a point u = A(x,y,z) € M, subject to the conditions

Alx,x,2) =2z, Ax,y,x)=y. (2.1)

It can be verified, by working in a coordinatized situation, that several other laws
follow; in a more abstract combinatorial situation than manifolds, these laws
should probably be postulated. The laws are that for any 2-whisker (x,y,z)

A(x,y,z) ~yand A(x,y,2) ~z (2.2)

A(y,x,A(x,y,2)) =2 (2.3)



One will not in general have or require the “symmetry” condition

A(x,y,2) = A(x,2,y); (2.4)
nor do we in general have, for 2-simplices x, y, z, that

Alx,y,z) =y—x+2z. (2.5)

The laws (2.4) and (2.5) are in fact equivalent, and affine connections satisfying
either are called symmetric or torsion free. We return to the torsion of an affine
connection below.

If x,y,z,u are four points in M such that (x,y,z) is a 2-whisker at x, the state-
ment u = A(x,y,z) can be rendered by a diagram

u=2A(x,yz)

-

The figure® is meant to indicate that the data of A provides a way of closing a
whisker (x,y,z) into a parallellogram (one may say that A provides a notion of
infinitesimal parallelogram); but note that A is not required to be symmetric in y
and z, which is why we in the figure use different signatures for the line segments
connecting x to y and to z, respectively.

Here, a line segment (whether single or double) indicates that the points con-
nected by the line segment are neighbours.

If x,y,z,u are four points in M that come about in the way described, we say
that the 4-tuple form a A-parallelogram . The fact that we in the picture did not
make the four line segments oriented contains some symmetry assertions, which
can be proved by working in a coordinatized situation; namely that the 4-group
7y X Z acts on the set of A-parallelograms; so for instance (u,z,y,x) is a A-paral-
lelogram, equivalently

(2.6)

A(A‘()Qy?Z)?Zay) = X.

On the other hand
/l(l(x,y,z),y,z)wx, 2.7)

3Note the difference between this figure and the figure (1.2), in which y and z are assumed to
be neighbours, and where the parallelogram canonically may be formed.



but it will not in general be equal to x; its discrepancy from being x is an expression
of the torsion of A. Even when y ~ z (so x,y,z form a simplex), the left hand side
of (2.7) need not be x. Rather, we may define the rorsion of A to be the law b
which to any 2-simplex x,y,z associates A (A(x,y,z),y,z). Then b(x,y,z) = x for
all simplices iff A is symmetric.

There is also a notion of curvature of A: Let M be a manifold equipped with
an affine connection A. If x,y,z form an infinitesimal 2-simplex in M, A (x,y, —)
takes any neighbour v of x into a neighbour of y, and to it, we can then apply
A(y,z,—) to obtain a neigbour of z. But since x ~ z, we could also transport v
directly by A(x,z,—). To say that A is flat or curvature-free is to say that we get
the same neighbour point of z as the result. An equivalent description of flatness
of A is to say that applying A (x,y, —), then A(y,z,—), then A(z,x,—) to any v ~ x
will return v as value. In this conception, the curvature r of A is a law, which to
any infinitesimal 2-simplex x,y, z provides a permutation of the set of neighbours
of x. (In the terminology of [7], r is a group-bundle valued combinatorial 2-form.)

We give two examples of affine connections on the unit sphere S.

Example 1. The unit sphere S sits inside Euclidean 3-space, S C E. Since E is in
particular an affine space, we may for any three points x,y,zinitformy—x+z € E.
For x,y,z in S, the point y — x4+ z will in general be outside S; if x, y, z are mutual
neighbours, however, y —x + z will be in S, cf. Remark at the end of Section 1.
What if x,y,z form an infinitesimal 2-whisker? Then we may define A (x,y,z) € S
to be the point, where the half line from the center of S to y — x4z meets S. It
is easy to see that (2.2) holds. The equation (2.3) requires a little argument in
the following spirit: the failure of (2.3) to hold is quadratic in x — y, and therfore
vanishes because x —y € D(3) C E = R>.

This affine connection is evidently symmetric in y and z, so is torsion free; it
does, however, have curvature. It is the Riemann- or Levi-Civita connection on
sphere.

Example 2. (This example does not work on the whole sphere, only away from
the two poles.) Given x,y and z with x ~ z (x ~ y is presently not relevant). Since
x and z are quite close, we can uniquely describe z in a rectangular coordinate
system at x with coordinate axes pointing East and North. Now take A (x,y,z)
to be that point near y, which in the East-North coordinate system at y has same
coordinates as the ones obtained for z in the coordinate system that we considered
at x.



The description of this affine connection is asymmetric in y and z, and it is
indeed easy to calculate that it has torsion ([7], Section 2.4). It has no curvature.
— One may think of this A (x,y,z) as parallel transporting z from x to y; so xy is an
active aspect, z is a passive aspect.

Connections constructed in a similar way also occur in materials science: for
a crystalline substance one may attach a coordinate system at each point, by using
the crystalline structure to define directions (call them “East” and “North” and
“Up”, say). The torsion for a connection A constructed from such coordinate
systems is a measure for the imperfection of the crystal lattice (dislocations), —
see [8], [4] and the references therein.

3 Second order notions; midpoint formation

The data of an affine connection on a manifold M is a (partially defined) ternary
operation A. We indicate in this Section how the data of a symmetric (= torsion
free) affine connection may be encoded by a binary operation “midpoint forma-
tion” 1 on pairs of second order neighbours in M.

Let M(5) C M x M denote the set of pairs (x,u) of second order neighbours;
My 1s the “second neighbourhood of the diagonal”, in analogy with the first
neighbourhood My described in Section 1. We have My C M. If A is an
affine connection on M, then for any 2-whisker x, y, z, we have that x ~, A (x,y,z).

Recall that for x ~; y in M, we have canonically the affine combination %x +

%y, the midpoint.

Definition 3.1 A midpoint formation structure on M is a map [ : M5y — M, ex-
tending the canonical midpoint formation for pairs of first order neighbour points.

Thus, w(x,u) is defined whenever x ~; u; and p(x,u) = %x+ %u whenever
x ~1 u. It can be proved that such u is automatically symmetric, p(x,u) = u(u,x),
and that p(x,u) ~, x and ~; u.

Theorem 3.2 There is a bijective correspondence between midpoint formation
structures L on M, and symmetric (= torsion free) affine connections A on M.

Proof (sketch). Given u, and given an infinitesimal 2-whisker (x,y,z). Since
x ~1y, we may form the affine combination 2y — x (reflection of x in y), and it is



still a first order neigbour of x. Similarly for 2z —x. So (2y —x) ~; (2z —x), and
so we may form u(2y — x,2z — x), and we define

A(X,y,Z) = ,u(2y—x,2z—x).

The relevant picture is here:

27—x
A(x,y,2)

2y—x
x
It is symmetric in y and z, by the symmetry of u. Also, if y = x, we get
A(x,x,2) = p(x,2z—x) = sx+ 3 (22— x),

since x ~1 2z —x and u extends the canonical midpoint formation for first order
neighbours. But this equals z, by evident equations for affine combinations. This
proves the first equation in (2.1), and the second one then follows by symmetry.

The passage from a symmetric affine connection A to midpoint formation u
is less evident. If x ~, u and if we have some y which “interpolates” in the sense
that x ~ y ~1 u, we may define p(x,u) by

w(x,u) = A(y, 5x+ 3y, 5y + su),

(make a picture!); one can prove that this does not depend on the choice of the
interpolating y.

Let us show that one gets the symmetric affine connection A back from the
midpoint formation y to which it gives rise. Let 2 be the affine connection con-
structed from u, so for a whisker x,y, z at x, use x as interpolating point between
2y —x and 2z — x; so

1()&',_)},2) = u(zy_xazz_x) = A()67 %x+%(2y—x),%x+%(22—x)),

but 3x+ 5(2y —x) =y and fx+ 1(2z —x) = z, by purely affine calculations; so
we get A (x,y,z) back.



Remark. The Theorem may also be seen as a manifestation of a simple algebraic
fact: in R", a midpoint formation u is given by p(x,y) = %x + 3y +M(x;y —x),
where x ~, y and where M (x; —) (for each x) is a function D, (n) — R", vanishing
on D (n). By a version of the KL axiom scheme, one sees that each such M (x; —)
extends uniquely to a quadratic R"-valued form on R", and there is classically a
bijective correspondence between such forms, and symmetric bilinear R"-valued
forms I' on R"; these I's will serve as Christoffel symbols for the symmetric affine
connection corresponding to t, modulo a factor —8.

In [5], it is shown how a Riemannian metric geometrically gives rise to a
midpoint formation (out of which, in turn, the Levi-Civita affine connection may
be constructed, by the process given by the Theorem).

Problem: Since a midpoint formation structure ( gives rise to an affine con-
nection A by a geometric construction, and an affine connection A gives rise to
a curvature r, likewise constructed geometrically, one gets by concatenation of
these constructions a geometric construction of r out of u. Is there a more direct
geometric way of getting r from pt?
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