
ABSENCE OF POSITIVE EIGENVALUES FOR HARD-CORE
N-BODY SYSTEMS

K. ITO AND E. SKIBSTED

Abstract. We show absence of positive eigenvalues for generalized N -body hard-
core Schrödinger operators under the condition of bounded obstacles with con-
nected exterior. A particular example is atoms and molecules with the assumption
of infinite mass and finite extent nuclei.
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1. Introduction and results

Consider the N -body Schrödinger operator

H =
N∑
j=1

(
− 1

2mj

∆xj + Vj(xj)
)

+
∑

1≤i<j≤N

Vij(xi − xj) (1.1)

for a system of N d-dimensional particles in Ω1 = Rd \Θ where Θ is a bounded and
open subset of Rd given such that the exterior set Ω1 is connected (for N = 1 the last
term is omitted). Whence H is an operator on the Hilbert space L2(Ω); Ω = (Ω1)N .
It is defined more precisely by imposing the Dirichlet boundary condition. This
operator models a system of N d-dimensional charged particles interacting with a
fixed charged nucleus of finite extent, for example a ball. In particular we could have
Coulomb potentials Vj(y) = qjq

ncl|y|−1 and Vij(y) = qiqj|y|−1 in dimension d ≥ 2
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assuming 0 ∈ Θ (the latter condition is reasonable due to Newton’s shell theorem).
We show in this particular case that H does not have positive eigenvalues. While this
property is well-known for the one-body problem (see for example [RS, FHH2O, IS2])
it is a new result for N ≥ 2. Moreover we extend the result to the case of molecules
with fixed charged nuclei of finite extent.

We obtain absence of positive eigenvalues in a much more general setting, that
is for so-called generalized N -body hard-core Schrödinger operators, see Theorem
1.7 for our main result. There are two a priori ingredients in our approach: 1)
Suitable vector fields (applied before to usual N -body Schrödinger operators for
different purposes). 2) A unique continuation property (in general a well-studied
subject). Apart from those the paper is self-contained. In particular we give full
proofs of a Mourre estimate and an exponential decay estimate of non-threshold
eigenstates needed for the problem at hand. These results are part of a scheme of
proof closely related to the one of [FH]. However technically there are significant
differences. A main ingredient is the construction of a new vector field well-suited
for our problem (and used somewhat differently), see (2.6). We addressed earlier
the problem of proving absence of positive eigenvalues for generalized N -body hard-
core Schrödinger operators in [IS3] using yet another approach, however obtaining
there only partial results. In addition our use of the new vector field is considerably
simpler, conceptionally as well as technically.

Since hard-core Schrödinger operators are conveniently defined by their quadratic
form we naturally include relatively form-compact local singularities of the poten-
tials. Those considered in [FH] are relatively operator-bounded ones. Whence our
results in the case of no obstacles cover some stronger type of local singularities
of the potentials than treated by [FH] (as for d = 2 with Coulomb interactions
as considered above). However we do not recover all of the results of [FH] in this
particular case for two reasons (the following conditions are not imposed in [FH]).
In this paper: 1) The potential singularities are located in a bounded set. 2) We
use the unique continuation principle which although being a general principle im-
plicitly constitutes a condition on the local singularities, see a brief discussion after
Proposition 1.6.

For previous works on N -body hard-core Schrödinger operators we refer to [BGS]
and [Gri]. As the reader will see there is some overlap between this paper and [Gri],
however the main problem of our paper, showing absence of positive eigenvalues, is
not treated in [Gri]. To the contrary it is stated there explicitly as an open problem.
A bi-product of our approach is absence of singularly continuous spectrum under
virtually no regularity conditions on the obstacles (only boundedness is needed)
generalizing [BGS, Theorem A], see Remark B.3. For further references to works
on hard-core Hamiltonians and some further discussion we refer to [Gri, Section
1]. Finally, to put hard-core Hamiltonians into a broader perspective and not for
claiming contribution, we call attention on an ongoing physics dispute: What is the
size of a nucleus/proton? See [A] for a recent contribution.

1.1. Usual generalized N-body systems. We will work in a generalized frame-
work. We first review the analogue of this without obstacles, i.e. with “soft poten-
tials”. This is given by real finite dimensional vector space X with an inner product
g, i.e. (X, g) is Euclidean space, and a finite family of subspaces {Xa| a ∈ A} closed
with respect to intersection. We refer to the elements of A as cluster decompositions
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(this terminology is not motivated here). The orthogonal complement of Xa in X is
denoted Xa, and correspondingly we decompose x = xa ⊕ xa ∈ Xa ⊕Xa. We order
A by writing a1 ⊂ a2 if Xa1 ⊂ Xa2 . It is assumed that there exist amin, amax ∈ A
such that Xamin = {0} and Xamax = X. Let

B = A \ {amin}.
The length of a chain of cluster decompositions a1 ( · · · ( ak is the number k. Such
a chain is said to connect a = a1 and b = ak. The maximal length of all chains
connecting a given a ∈ A\{amax} and amax is denoted by #a. We define #amax = 1
and denoting #amin = N + 1 we say the family {Xa|a ∈ A} is of N -body type.
The N -body Schrödinger operator H introduced above (now considered without an
obstacle, i.e. with Ω1 = Rd) is of the form H = H0 + V , where 2H0 is (minus) the
Laplace-Beltrami operator on the space (X, g)

X = (Rd)N , g =
N∑
j=1

mj|xj|2,

V = V (x) =
∑

b∈B Vb(x
b) and the relevant family {Xa|a ∈ A} of subspaces is

indeed of N -body type, see the proof of Corollary 1.8 for details. However this is
just one example of a generalized N -body Schrödinger operator, see [DeGé, Section
5.1] for other examples. The general construction of such an operator H is similar,
and under the following condition it is well-defined with form domain given by the
Sobolev space H1(X), cf. [RS, Theorem X.17].

Condition 1.1. There exists ε > 0 such that for each (real-valued) potential Vb,

b ∈ B, there is a splitting Vb = V
(1)
b + V

(2)
b , where

(1) V
(1)
b is smooth and

∂αy V
(1)
b (y) = O

(
|y|−ε−|α|

)
. (1.2)

(2) V
(2)
b is compactly supported and

(−∆ + 1)−1/2V
(2)
b (−∆ + 1)−1/2 is compact on L2(RdimXb

y ). (1.3)

Let −∆a = (pa)2 and −∆a = p2
a denote (minus) the Laplacians on L2(Xa) and

L2(Xa), respectively. Here pa = πap and pa = πap denote the “internal” (i.e. within
clusters) and the “inter-cluster” components of the momentum operator p = −i∇,
respectively. For all a ∈ B we introduce

V a(xa) =
∑
b⊂a

Vb(x
b),

Ha = −1
2
∆a + V a(xa) on L2(Xa),

Ha = Ha ⊗ I + I ⊗
(
− 1

2
∆a

)
on L2(Xa)⊗ L2(Xa),

Ia(x) =
∑
b6⊂a

Vb(x
b).

We also define Hamin = 0 on L2(Xamin) := C. The operator Ha is the sub-
Hamiltonian associated with the cluster decomposition a, and Ia is the sum of all
“inter-cluster” interactions. The detailed expression of Ha depends on the choice of
coordinates on Xa.
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Given a family {Xa|a ∈ A} of subspaces of N -body type and interactions obeying
Condition 1.1 the generalized N -body Hamiltonian is H = Hamax . Let

T = ∪a∈A,#a≥2 σpp(Ha) (1.4)

denote the set of thresholds of H. By the HVZ theorem [RS, Theorem XIII.17] the
essential spectrum of H is given by the formula

σess(H) = [min T ,∞). (1.5)

It is also well-known that under rather general conditions H does not have positive
eigenvalues and the negative non-threshold eigenvalues can at most accumulate at
the thresholds and only from below, see [FH] and [Pe].

1.1.1. Graf vector field and Mourre estimate. We give a brief review of the con-
struction of a family of conjugate operators for N -body Hamiltonians originating
from [Sk1]. The phrase “conjugate” is here used (in agreement with conventions)
to signify that there exists a so-called Mourre estimate. A slightly different proof of
this Mourre estimate appears in [Sk2]. The construction is based on the vector field
invented by Graf [Gra] which is a vector field satisfying the following properties, cf.
[Gra, De, DeGé, Sk2]. We use throughout the paper the notation 〈x〉 =

√
x2 + 1

and N0 = N ∪ {0}.

Lemma 1.2. There exist on X a smooth vector field ω̃ with symmetric derivative ω̃∗
and a partition of unity {q̃a} indexed by a ∈ A and consisting of smooth functions,
0 ≤ q̃a ≤ 1, such that for some positive constants r1 and r2

(1) ω̃∗(x) ≥
∑

a πaq̃a.
(2) ω̃a(x) = 0 if |xa| < r1.
(3) |xb| > r1 on supp(q̃a) if b 6⊂ a.
(4) |xa| < r2 on supp(q̃a).
(5) For all α ∈ NdimX

0 and k ∈ N0 there exist C ∈ R:

|∂αx q̃a|+ |∂αx (x · ∇)k
(
ω̃(x)− x

)
| ≤ C. (1.6)

Now, proceeding as in [Sk2], we introduce the rescaled vector field ω̃R(x) := Rω̃( x
R

)
and the corresponding operator

A = AR = ω̃R(x) · p+ p · ω̃R(x); R > 1. (1.7)

We also introduce a function d : R→ R by

d(E) =

{
infτ∈T (E)(E − τ), T (E) := T ∩ ]−∞, E] 6= ∅,
1, T (E) = ∅.

(1.8)

These devices enter into the following Mourre estimate which is the relatively form
compact version of the relatively operator compact one of [Sk2, Corollary 4.5]. We
give a full proof in Appendix B covering inclusion of hard-core interactions. We
remark that all inputs needed for the proof are contained in Lemma 1.2, whence the
particular construction of the Graf vector field is irrelevant. For a different proof
(also valid in the context of hard-core interactions) we refer to [Gri]. (For a different
conjugate operator, see [BGS].)

Lemma 1.3. For all E ∈ R and κ > 0 there exists R0 > 1 such that for all R ≥ R0

there is a neighbourhood V of E and a compact operator K on L2(X) such that

f(H)∗i[H,AR]f(H) ≥ f(H)∗{4d(E)− κ−K}f(H) for all f ∈ C∞c (V). (1.9)
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Here the commutator is defined by its formal expression, see (2.3). The possibly
existing local singularities of the potential do not enter (for R large) due to Lemma
1.2 (2). This feature is a strong indication of the existence of a similar Mourre
estimate for the hard-core model of Subsection 1.2, see Lemma 1.5 for such extension.

Two of the consequences of a Mourre estimate like the one stated above are that
the set of thresholds T is closed and countable and that the eigenvalues of H can
at most accumulate at T , see Subsection B.2. We discuss a third consequence in
Subsection 2.1 and Appendix C (for hard-core Hamiltonians), decay of non-threshold
eigenstates.

1.2. Generalized N-body hard-core systems. The generalized hard-core model
is a modification for the above model. For the generalized hard-core model we are
given for each a ∈ B an open subset Ωa ⊂ Xa with Xa \ Ωa compact, possibly
Ωa = Xa. Let for amin 6= b ⊂ a

Ωa
b =

(
Ωb + Xb

)
∩Xa = Ωb + Xb ∩Xa,

and for a 6= amin

Ωa = ∩amin 6=b⊂aΩ
a
b .

We define Ωamin = {0} and Ω = Ωamax .

Condition 1.4. There exists ε > 0 such that for all b ∈ B there is a splitting into

(real-valued) terms Vb = V
(1)
b + V

(2)
b , where

(1) V
(1)
b is smooth on the closure of Ωb and

∂αy V
(1)
b (y) = O

(
|y|−ε−|α|

)
. (1.10)

(2) V
(2)
b vanishes outside a bounded set in Ωb and

V
(2)
b ∈ C

(
H1

0 (Ωb), H
1
0 (Ωb)

∗). (1.11)

Here and henceforth, given Banach spaces X1 and X2, the notation C
(
X1, X2

)
and B

(
X1, X2

)
refers to the set of compact and the set of bounded operators T :

X1 → X2, respectively.
We consider for a ∈ B the Hamiltonian Ha = −1

2
∆xa + V a on the Hilbert space

L2(Ωa) with the Dirichlet boundary condition on ∂Ωa, in particular

H = 1
2
p2 + V = H0 + V on H := L2(Ω)

with the Dirichlet boundary condition on ∂Ω. More precisely the Hamiltonian Ha,
henceforth called a hard-core Hamiltonian, is given by its form. The form domain is
the standard Sobolev space H1

0 (Ωa), and the corresponding action is the (naturally
defined) Dirichlet form. Due to the continuous embedding H1

0 (Ωa) ⊂ H1
0 (Ωa

b ) for
amin 6= b ⊂ a we conclude that indeed Ha is self-adjoint, cf. [RS, Theorem X.17].
Again we define Hamin = 0 and the set of thresholds by (1.4). We claim that
Lemma 1.3 holds for the hard-core Hamiltonian H upon replacing the Hilbert space
L2(X) there by H (and with the same interpretation of the commutator). However
we prefer to state the Mourre estimate slightly differently (see the comments after
Lemma 1.5). There is the following estimate, cf. Appendix B and [Gri, Theorem
2.4]:
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Lemma 1.5. For all κ ∈ (0, 1] and compact I ⊂ R there exists R0 > 1 such that for
all R ≥ R0 and all E ∈ I there is a neighbourhood V of E and a compact operator
K on H such that

f(H)∗i[H,AR]f(H) ≥ 4f(H)∗{d(E+κ)−5κ−K}f(H) for all f ∈ C∞c (V). (1.12)

Here the function d is defined by (1.8) now of course in terms of the set of thresh-
olds for the hard-core Hamiltonian H. We also note that for R > 1 taken large
enough the rescaled Graf vector field ω̃R is complete on Ω. The latter is doable due
to Lemma 1.2 (2) and (5). This allows for an interpretation of the “commutator”
i[H,AR] of (2.3) as a commutator, see Subsection B.2 and Appendix A for details.
This feature is needed for showing exponential decay of non-threshold eigenstates.
The local uniformity in energy of this version of the Mourre estimate is needed too
for showing exponential decay. To the contrary Lemma 1.5 can be shown using
only (2.4) (in particular only the formal expression of the commutator) and some
of the properties of Lemma 1.2, see Subsection B.1. Using the fact that i[H,AR]
is a commutator one can obtain a version of Lemma 1.5 similar to Lemma 1.3 and
various consequences of independent interest, see Subsection B.2.

1.3. Results.

Proposition 1.6. Suppose N ≥ 1 and Condition 1.4. Suppose the hard-core Hamil-
tonian H does not have positive thresholds. Suppose that any eigenstate of H van-
ishing outside a bounded set must be zero (the unique continuation property). Then
H does not have positive eigenvalues.

The unique continuation property (here used at infinity only) is a well-studied
subject in particular for the one-body problem, see for example [Ge, JK, RS, Wo]. It
is valid for some classes of potential singularities given the condition of connectivity
of Ω although to our knowledge the state of art is presently not satisfactory for the
N -body problem, see the proof of Corollary 1.8 below for a particular application.
The following main result of this paper follows readily from Proposition 1.6 and
induction in N . Recall B := A \ {amin}.
Theorem 1.7. Suppose N ≥ 1 and Condition 1.4. Suppose the unique continuation
property for H and all sub-Hamiltonians Hb (more precisely that any eigenstate of
Hb for b ∈ B vanishing outside a bounded set must be zero). Then H does not have
positive eigenvalues.

This result applies to (1.1) and the following generalization: Consider for given
disjoint R1, . . . , RK ∈ Rd the N -body Schrödinger operator

H =
N∑
j=1

(
− 1

2mj

∆xj +
∑

1≤k≤K

V k
j (xj −Rk)

)
+

∑
1≤i<j≤N

Vij(xi − xj) (1.13)

describing a system of N d-dimensional particles in Ω1 = Rd \ Θ, where Θ =
∪1≤k≤KΘk for given open and bounded subsets Θ1, . . . ,ΘK of Rd such that Rk ∈ Θk,
k = 1, . . . , K (for N = 1 the last term to the right in (1.13) is omitted).

Corollary 1.8. For N charged particles confined to Ω1 ⊂ Rd with the additional
properties that d ≥ 2 and this exterior set Ω1 = Rd\Θ is connected the corresponding
Hamiltonian H given by (1.13) with Coulomb interactions V k

j (y) = qjq
k|y|−1 and

Vij(y) = qiqj|y|−1 (and defined by the Dirichlet boundary condition) does not have
positive eigenvalues.



ABSENCE OF POSITIVE EIGENVALUES FOR HARD-CORE N -BODY SYSTEMS 7

Proof. There is the following concrete description of the family {Xa|a ∈ A}: Con-
sider a = (C1, . . . , Cp) where the Cq’s are disjoint subsets of {1, . . . , N}. For
p ≥ 2 and q < p we have #Cq ≥ 2 and we let XCq = {x ∈ X|xj = 0 if j /∈
Cq and

∑
i∈Cq mixi = 0}. Either similarly 1) XCp = {x ∈ X|xj = 0 if j /∈

Cp and
∑

i∈Cpmixi = 0} (in that case we have #Cp ≥ 2), or 2) XCp = {x ∈
X|xj = 0 if j /∈ Cp}. In both cases let correspondingly Xa = XC1 ⊕ · · · ⊕ XCp .
Moreover we supplement by writing Xamin = {0} where, for example, amin := ∅.
This is a concrete labeling of {Xa|a ∈ A} for (1.13). The sub-Hamiltonians are
given as

Ha = HC1 ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗HCp ,

where for q < p the operatorHCq is a usual Schrödinger operator defined on L2(XCq).
The same is valid for HCp in case 1). To the contrary in case 2) the operator HCp

has the same form as (1.13), but with only Np := #Cp particles involved, whence
it is an operator on L2((Ω1)Np). Note that either Ωb = Xb or Ωb = {x ∈ X|xj =
0 if j 6= i and xi ∈ Ω1} for some i ≤ N .

Next we introduce the following subset of Ω = (Ω1)N ; Ω1 = Rd \Θ:

Ω̃ =

{
Ω for N = 1,

Ω \ {(x1, . . . , xN) ∈ (Rd)N |xi = xj for some i 6= j} for N ≥ 2.

We are going to use that Ω̃ is connected for d ≥ 2 (and similarly upon replacing N by
Np). For this property we may argue as follows: Since Ω1 is arcwise connected also
(Ω1)N is arcwise connected. Any of the subspaces {(x1, . . . , xN) ∈ (Rd)N |xi = xj},
i 6= j, has co-dimension d. We conclude by using repeatedly Lemma 1.9 stated
below and the fact that d ≥ 2.

We need to check that the condition of Theorem 1.7 that the unique continuation
property for H and all sub-Hamiltonians Ha holds. For that we shall use the version
of the unique continuation property [RS, Theorem XIII.63]. Let us first consider

the operator H: We argued above that Ω̃ is connected. Since moreover the subset
{(x1, . . . , xN) ∈ Ω|xi = xj for some i 6= j} of Ω has measure zero we can indeed
apply [RS, Theorem XIII.63] for this case. For the unique continuation property for
any sub-Hamiltonians Ha we use the above tensor decomposition. Any eigenstate
has the form

φa =
∑
l

ψl ⊗ φCpl ,

where {ψl} is an at most countable orthonormal set of vectors and each φ
Cp
l is an

eigenstate of HCp . If φa vanishes outside a bounded set also each φ
Cp
l vanishes

outside a bounded set (seen by multiplying by ψl and integrating). In case 2) we

then argue as above replacing N by Np and conclude that each φ
Cp
l = 0 and whence

that φa = 0. In case 1) the same type of arguments works (we omit the details). We
conclude by Theorem 1.7. �

Lemma 1.9. Suppose U is an open connected subset of Rn, n ≥ 2, and L is a closed
submanifold of U with co-dimension at least 2 then also U \ L is connected.

Proof. We can assume that U ∩L 6= ∅. Suppose U \L = U1∪U2 where U1 and U2 are
open and disjoint. We need to show that either U1 or U2 is empty. Look for j = 1, 2
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at the boundary ∂Uj of Uj considering Uj as a subset of Rn, and let us denote the
part of this boundary inside U , that is U ∩ ∂Uj, by Vj. Clearly U ∩ L = V1 ∪ V2.
Moreover since L has co-dimension at least 2 the set V1 ∩ V2 = ∅ (easily seen by
using a suitable “local” arc). Assuming that V1 6= ∅ (can be done since V1 and V2

are not both empty) we will show that U2 = ∅: Pick x1 ∈ V1 and suppose that there
exists x2 ∈ U2. Then we pick a arc γ : [0, 1]→ U with γ(0) = x1 and γ(1) = x2 and
consider

t1 = sup{t ∈ [0, 1]|γ(s) ∈ U1 ∪ V1 for s ∈ [0, t]}.

We have γ(t1) ∈ V1 ∩ V2, contradicting that V1 ∩ V2 = ∅. �

We shall need some more notation. We fix a non-negative χ ∈ C∞(R) with
0 ≤ χ ≤ 1 and

χ(t) =

{
0 for t ≤ 5/4,
1 for t ≥ 7/4.

We shall frequently use the rescaled functions given in terms of parameters ν ′ ≥
2ν > 0 as

χν(t) = χ+
ν (t) = χ(t/ν),

χ̄ν = χ−ν = 1− χν ,
χν,ν′ = χνχ̄ν′ .

(1.14)

For any self-adjoint operator T and state φ we abbreviate 〈T 〉φ = 〈φ, Tφ〉.

2. Preliminaries, ideas and proof

We collect some preliminaries, explain the ideas of the proof of Proposition 1.6 and
then give the proof. The latter is done in Subsection 2.3 using results of appendices.

2.1. Exponential decay. According to [Gri, Theorem 2.5(1)] stated there without
proof (a reference to Grisemer’s thesis is given) any non-threshold eigenstate decays
exponentially to an order determined by the thresholds above the corresponding
eigenvalue, cf. the result of [FH] for usual N -body Hamiltonians. This is a conse-
quence of the hard-core Mourre estimate by arguments rather similar to the ones of
[FH]. Below we briefly explain some preliminary ingredients of our proof of Lemma
1.5 and the proof of this application, see Appendices B and C for complete proofs
in the present context. More precisely we show in Appendix C that if H does not
have positive thresholds then any φ ∈ D(H) with (H − E)φ = 0 for some E > 0 is
exponentially decaying to any order, whence super-exponentially decaying, that is
eσ|x|φ ∈ H for all σ ≥ 0.

2.1.1. Potential function. Since the derivative ω̃∗ of Lemma 1.2 is symmetric we can
write

ω̃ = ∇r2/2.

The function r = r(x) can be chosen positive, smooth and convex, see the proof of
[De, Proposition 3.4] (we remark that [De] also uses the Graf construction although
with a different regularization procedure). Let us introduce

ω = ∇r and ∂rf = iprf := ω · ∇f.
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Note that ω̃ = rω. From the convexity of r we learn that

∂r|dr|2 ≥ 0. (2.1a)

We have a slight extension of a part of (1.6), cf. [De, Lemma 3.3 (f)] and [DeGé,
(5.2.8)],

∀α ∈ NdimX
0 and k ∈ N0 : |∂αx (x · ∇)k

(
r2 − x2

)
| ≤ Cα. (2.1b)

In particular we obtain yet another property

∀α ∈ NdimX
0 : |∂αx

(
|dr|2 − 1

)
| ≤ Cα〈x〉−2. (2.1c)

In fact letting f = r2 − x2 the bounds (2.1c) follow from (2.1b) and the identity

|dr|2 − 1 =
x · ∇f + 4−1|df |2 − f

x2 + f
.

The rescaled r reads

rR(x) = Rr(x/R),

so that ω̃R = ∇r2
R/2. Clearly the bounds (2.1a)-(2.1c) are also valid for the rescaled

r (possibly with R-dependent constants). We also rescale the partition of unity func-
tions of Lemma 1.2 introducing q̃a,R(x) = q̃a(x/R), and similarly for the “quadratic”
partition of unity functions

qb(x) := q̃b(kx)
(∑

c

q̃c(kx)2
)−1/2

; k = r1/r2.

Using that

q̃c(x)q̃b(kx) = 0 if c 6⊂ b,

and Lemma 1.2 (1) we conclude that

ω̃∗(x) ≥
∑
b

πbq
2
b (x), (2.2)

and similarly for the rescaled quantities.

2.1.2. Commutator calculation. We formally calculate (or more precisely define)

i[H,AR] = 2pω̃∗(x/R)p− (4R2)−1
(
∆2r2

)
(x/R)− 2ω̃R · ∇V, (2.3)

and using (2.2) we thus deduce

i[H,AR] ≥ 2
∑
b

qb,R p
2
b qb,R +O

(
R−2

)
− 2ω̃R · ∇V

= 2
∑
b

qb,R p
2
b qb,R +O

(
R−min{2,ε}). (2.4)

2.2. Super-exponentially decaying states. We are heading at proving absence
of positive eigenvalues using the following three-step procedure: 1) Using the as-
sumption of absence of positive thresholds and the hard-core Mourre estimate we
deduce that any eigenstate with corresponding positive eigenvalue decays super-
exponentially, cf. Subsection 2.1. 2) We show that any such state must vanish
outside a bounded set. 3) We invoke the unique continuation property and conclude
that any such state vanishes.
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2.2.1. Homogeneous vector field and potential function, and distortions. We shall
use a potential function introduced in [Ya]. Its construction and some properties
are somewhat similar to those for the previously discussed potential function. As
before the specific construction will not be relevant for us. We only need the following
result, cf. [Ya].

Lemma 2.1. There exists a real-valued m ∈ C∞(X\{0}) with following properties:

(1) m is homogeneous of degree one.
(2) m(x) ≥ 1 for |x| = 1.
(3) m is convex.
(4) There exists δ ∈ (0, 1) such that for all a ∈ A

m(x) = m(xa) if |xa| > (1− δ)|x|. (2.5)

We construct a distorted version of the function m of Lemma 2.1 and the associ-
ated vector field as follows. This is in terms of a (small) parameter ε ∈ (0, 1) and a
(large) parameter R > 1 to be fixed below. Pick g ∈ C∞([0,∞)) with g(s) = s−s1−ε

for s large, g(s) = R for s < R and g′(s), g′′(s) ≥ 0 for all s > 0. Define then

r(x) = g(m(x)) and ω(x) = ∇r(x). (2.6)

This is doable since indeed the function g̃(s) := s − s1−ε obeys g̃′(s), g̃′′(s) ≥ 0 for
s ≥ 1. (Our construction is somewhat inspired by [RT] in which the convexity of
the function |x| − (1 + |x|)1−ε on Rn, n ≥ 3, is used although in a different context.)
Note also that we used the same notation as before although the new functions r
and ω are different from the old functions r and ω, respectively. We are going to
use the new quantities below and in Subsection 2.3. The analogue of (1.7) is

A = 1
2
(∇r2 · p+ p · ∇r2) = rω · p+ p · rω. (2.7)

We fix the parameter R so big that ∇r2 = 2rω is complete in Ω, cf. the properties
(4) (of Lemma 2.1) and Xa \Ωa be compact (see Remark A.3 for more details), and

so big that ω ·∇V (2)
b = 0, cf. the properties (4) and V

(2)
b be supported in a bounded

set. The parameter ε ∈ (0, 1) is chosen such that ε < ε where ε is given in Condition
1.4.

It is not known whether there is a Mourre estimate for the operator (2.7) (as for
the one defined by (1.7)). On the other hand, as the reader will see, the new A yields
some useful bound for super-exponentially decaying eigenstates. To our knowledge
such bound does not follow from using the previous operator A.

We compute

∇2r = g′∇2m+ g′′dm⊗ dm, (2.8a)
1
2
∇2r2 = r∇2r + dr ⊗ dr, (2.8b)

ω · ∇|dr|2 = 2∇2r(ω, ω). (2.8c)

In particular (seen by using (3) and (2.8a) twice) r and r2 are convex, and

ω · ∇|dr|2 ≥ 2(g′)2g′′|dm|4 ≥ 0. (2.9)

By (1), (2) and the Euler’s homogeneous function theorem

x̂ · ∇m(x) = m(x̂) ≥ 1; x̂ := x/|x|.
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Whence |dm| ≥ 1, and we get from (2.9) the lower bound

rω · ∇|dr|2 ≥ cr−ε for |x| large. (2.10)

2.2.2. Idea of procedure. Let us explain (formally) how we are going to use these
properties: For σ ≥ 1 we compute

i[H0, e
σrAeσr] = eσr

(
i[Hσ

0 , A] + σ(prA+ Apr)
)
eσr; (2.11)

Hσ
0 = H0 − σ2

2
|dr|2,

pr = 1
2
(ω · p+ p · ω).

Here (formally)

i[Hσ
0 , A] = p∇2r2p− 1

4
∆2r2 + σ2rω · ∇|dr|2.

Noting the formulas

A = 2rpr − i|dr|2,
A = 2prr + i|dr|2,

this leads to the identity (cf. (2.3))

i[H0, e
σrAeσr] = eσr

(
p∇2r2p+ 4σprrpr − 1

4
∆2r2 + σ(σr − 1)ω · ∇|dr|2

)
eσr.

Applied to states localized at infinity and using (2.10) we then obtain that

e−σri[H0, e
σrAeσr]e−σr ≥ 4σprrpr − Cr−2 + σ2cr−ε.

Computing and estimating

e−σri[V, eσrAeσr]e−σr = −2rω · ∇V ≥ −Cr−ε,
we conclude using that ε < min(ε, 1) that at infinity

i[H, eσrAeσr] ≥ σ2c̃r−εe2σr.

Roughly our idea (to be implemented in Subsection 2.3) is to apply this bound to
a localization of any super-exponentially decaying eigenstate (localized at infinity).
By undoing the commutator (a virial type argument) we shall obtain a bound from
which we can deduce that the eigenstate vanishes outside a bounded set (done by
letting σ →∞).

2.3. Implementation of idea. Under Condition 1.4 we shall show that

(H − E)φ = 0, E ∈ R, and ∀σ ≥ 0 : eσrφ ∈ H = L2(Ω)

⇒ φ = 0 outside a bounded set.
(2.12)

Here and below r is given by (2.6) with the parameters R and ε as specified (although
above r could be replaced by |x| of course). For φ given as in (2.12) we let for σ, ν ≥ 1

φσ = φσ,ν := χνe
σ(r−4ν)φ; χν = χν(r); (2.13)

here (1.14) is used. By assumption φσ ∈ H. Putting Hσ = H− σ2

2
|dr|2 we note that

(formally)

(Hσ − E)φσ = − iσprφσ − ieσ(r−4ν)R(ν)φ, (2.14)

where R(ν) = i[H0, χν ] = Re
(
χ′νp

r
)
. Here and henceforth

prf = −i∂rf = −iω·∇f ;

whence pr = Re pr.
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2.3.1. Undoing the commutator. Using Lemma A.10, Corollary A.11 and Lemma
A.12 we can indeed “undo the commutator”

i[Hσ, A] := p∇2r2p− 1
4
∆2r2 + σ2r∂r|dr|2 − 2rω · ∇V, (2.15)

and use (2.14). Whence

〈i[Hσ, A]〉φσ = −2σRe 〈prA〉φσ − 2 Re 〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ. (2.16)

The first term of (2.16) is computed

− 2σRe (prA)

= −σpr(2rpr − i|dr|2) + h.c.

= −4σprrpr + σ(∂r|dr|2).

(2.17)

As for the second term we estimate (recall the notation χ̄ν = 1− χν)

− 2 Re 〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ

≤ ‖eσ(r−4ν)R(ν)φ‖2 + ‖χ̄2νAχνe
σ(r−4ν)φ‖2

≤
{
‖χ′νeσ(r−4ν)prφ‖+ 1

2
‖(χ′′ν |dr|2 + χ′ν(∆r))e

σ(r−4ν)φ‖
}2

+
{
‖2rχ̄2νχνe

σ(r−4ν)prφ‖+ ‖χ̄2ν(2r|dr|2χ′ν + 2σrχν |dr|2 + 1
2
(∆r2)χν)e

σ(r−4ν)φ‖
}2

≤ Cν2‖χν/2|pφ|‖2 + Cν2σ2‖φ‖2

≤ Cν2〈p2〉φ + Cν2σ2‖φ‖2.

Using infinitesimal smallness of the potential we have for some C > 0〈
p2
〉
φ
≤ 〈4H + C〉φ = (4E + C)‖φ‖2,

and we deduce that

−2 Re 〈R(ν)eσ(r−4ν)Aχνe
σ(r−4ν)〉φ ≤ Cν2σ2‖φ‖2. (2.18)

2.3.2. Doing the commutator. On the other hand using (2.10) we obtain

〈i[Hσ, A]〉φσ ≥ 〈σ
2r∂r|dr|2 − Cr−min(2,ε)〉φσ ≥ σ2c̃〈r−ε〉φσ + 〈σ∂r|dr|2〉φσ ; (2.19)

this is provided ν ≥ 1 is sufficiently large. We fix any such ν.

2.3.3. Final estimate and conclusion. We combine (2.16)–(2.19) and obtain that

Cν2σ2‖φ‖2 ≥ 4σ〈r〉prφσ + σ2c̃〈r−ε〉φσ ≥ σ2c̃〈r−ε〉φσ .

Letting then σ →∞ we deduce that χ4ν(r)φ ≡ 0.
Finally Proposition 1.6 follows by invoking the unique continuation property (as-

sumed to hold).

Appendix A. Justifying computations

In this appendix we show how to “undo the commutator” i[H,A]. We do it
simultaneously for the A given by (1.7) and the A given by (2.7) to justify (C.12)
and (2.16), respectively. For a different regularization procedure, see [Gri, Lemma
3.15].
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A.1. Setting. We shall work in a generalized setting on a Riemannian manifold
(see [Cha] for geometric notions), and present all conditions needed for the argument
independently of the previous sections. The case of a constant metric is sufficient
for application to (C.12) and (2.16). The verification of the conditions below under
Condition 1.4 is straightforward.

Let (Ω, g) be a Riemannian manifold of dimension d ≥ 1, and consider the
Schrödinger operator on H = L2(Ω) = L2(Ω, (det g)1/2dx):

H = H0 + V ; H0 = −1
2
∆ = 1

2
p∗i g

ijpj, pi = −i∂i.

We realize H0 as a self-adjoint operator by imposing the Dirichlet boundary con-
dition, i.e. H0 is the unique self-adjoint operator associated with the closure of the
quadratic form

〈H0〉ψ = 〈ψ,−1
2
∆ψ〉, ψ ∈ C∞c (Ω).

We denote the form closure and the self-adjoint realization by the same symbol H0.
Moreover, we consider the weighted spaces

Hs = (H0 + 1)−s/2H, s ∈ R,

and H0 may also be understood as Hs → Hs−2, s ∈ R. For the realization of
H = H0 + V we assume the following condition:

Condition A.1. The potential V is a locally integrable real-valued function, and
there exist δ ∈ [0, 1) and C > 0 such that for any ψ ∈ C∞c (Ω)

|〈V 〉ψ| ≤ δ〈H0〉ψ + C‖ψ‖2.

By this condition we can extend the form domain of V as Q(V ) = H1, and the
extended form defines a bounded operator V : H1 → H−1. Henceforth we consider
H = H0+V as a closed quadratic form on Q(H) = H1 or, alternatively, as a bounded
operator H1 → H−1. In Subsection A.3 we shall also consider the self-adjoint
realization of H on H (also denoted by H), which is the restriction of H : H1 → H−1

to the domain:

D(H) = {ψ ∈ H1 |Hψ ∈ H} ⊂ H.
We next assume a regularity condition for the (virtual) boundary of Ω:

Condition A.2. There exists a real-valued function r ∈ C∞(Ω) such that:

(1) The gradient vector field grad r2 on Ω is complete.
(2) The following bounds hold:

sup |dr| <∞, sup |∇2r2| <∞, sup |d∆r2| <∞. (A.1)

Remark A.3. The function r of Condition A.2 is indeed a generalization of the two
r’s of Section 2. We refer to (2.1b) and Lemmas 1.2 and 2.1 for properties. Note
that in both cases the vector field grad r2 is defined and complete on X ⊃ Ω, cf.
Lemma 1.2 (5) and Lemma 2.1 (1). The completeness on Ω is then valid intuitively
because the vector fields are tangent to the boundary ∂Ω, cf. Lemma 1.2 (2) and
Lemma 2.1 (4). Rigorously Condition A.2 (1) can be seen as a consequence of
Lemma 1.2 (2), Lemma 2.1 (4) and the inclusion

∂Ω ⊂ ∪b∈B(∂Ωb + Xb),

indeed excluding that the flow can hit the boundary in finite time. Clearly Condition
A.2 (2) follows from (2.1b) and Lemma 2.1 (1).
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By Condition A.2 (1) the vector field grad r2 generates a one-parameter group of
diffeomorphisms on Ω, which we denote by

e2·· : R× Ω→ Ω, (t, x) 7→ e2tx. (A.2)

This satisfies by definition, in local coordinates,

∂t(e
2tx)i = gij(e2tx)(∂jr

2)(e2tx). (A.3)

We define the group of dilations eitA : H → H with respect to r as the one-parameter
group of unitary operators

eitAu(x) = J(e2t;x)1/2

(
det g(e2tx)

det g(x)

)1/4

u(e2tx),

where J is the relevant Jacobian. Note that there is another expression:

eitAu(x) = exp

(∫ t

0

1
2
(∆r2)(e2sx) ds

)
u(e2tx). (A.4)

We let A be the generator of eitA. By the unitarity of eitA the operator A is self-
adjoint, and C∞c (Ω) ⊆ D(A) is a core for it. In fact, the dense subspace C∞c (Ω) ⊆ H
is invariant under eitA, and for any u ∈ C∞c (Ω) the limit

lim
t→0

t−1(eitAu− u)

exists in H. Note that by (A.4) (when applied to vectors in C∞c (Ω)) the operator A
takes the form

A = i[H0, r
2] = 1

2
{(∂ir2)gijpj + p∗i g

ij(∂jr
2)} = rpr + (pr)∗r,

where pr = −i∂r = −i(∂ir)g
ij∂j.

Let us first consider the commutator i[H,A] as a quadratic form defined for ψ ∈
C∞c (Ω) by

〈i[H,A]〉ψ = i〈Hψ,Aψ〉 − i〈Aψ,Hψ〉.

In order to discuss its extension we impose the following abstract form bound con-
dition, which is not quite independent of Conditions A.1 and A.2 (see for example
[IS1, Corollary 4.2]).

Condition A.4. There exists C > 0 such that for any ψ ∈ C∞c (Ω)

|〈i[H,A]〉ψ| ≤ C〈H0 + 1〉ψ.

Similarly to the above, we henceforth regard i[H,A] as a quadratic form on
Q(i[H,A]) = H1 (which may not be closed) or as a bounded operator H1 → H−1.

A.2. Regularity properties of flow. We prove a regularity properties of the flow
(A.2) and its quantum implementation (A.4).

Lemma A.5. There exist d, C > 0 such that for any t ∈ R and x ∈ Ω

de−C|t| ≤ gij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l] ≤ deC|t|. (A.5)
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Proof. We note that the expression in the middle of (A.5) is independent of choice
of coordinates. Fix x ∈ Ω and choose coordinates such that gij(x) = δij. Consider
the vector fields along {e2tx}t∈R given by ∂ie

2tx and ∂je
2tx. Since the Levi-Civita

connection ∇ is compatible with the metric,

∂
∂t
gkl(e

2tx)[∂i(e
2tx)k][∂j(e

2tx)l] = ∂
∂t
〈∂ie2tx, ∂je

2tx〉
= 〈∇∂te2tx∂ie

2tx, ∂je
2tx〉+ 〈∂ie2tx,∇∂te2tx∂je

2tx〉.
(A.6)

(The definition of ∇∂te2tx is given below.) From (A.3) it follows that

∇∂te2tx∂i(e
2tx)• = ∂t∂i(e

2tx)• + [∂t(e
2tx)k]Γ•kl∂i(e

2tx)l

= ∂i∂t(e
2tx)• + (gkm∂mr

2)Γ•kl∂i(e
2tx)l

= [∂i(e
2tx)k]∂k(g

•l∂lr
2) + [∂i(e

2tx)l]Γ•klg
km∂mr

2

= ∇∂ie2tx(g
•l∂lr

2)

= g•l[∂i(e
2tx)k](∇2r2)kl.

Thus, plugging this into (A.6) and taking a contraction with gij(x) = δij, we obtain∣∣∣ ∂∂tgij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l]

∣∣∣ ≤ Cgij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l].

Noting gij(x)gkl(e
2tx)[∂i(e

2tx)k][∂j(e
2tx)l]

∣∣
t=0

= d, we have (A.5). �

Lemma A.6. For any s ∈ [−1, 1] the inclusion eitAHs ⊆ Hs holds, and

sup
|t|<1

‖eitA‖B(Hs) <∞. (A.7)

Moreover, eitA : Hs → Hs is strongly continuous in t ∈ R.

Proof. Let us first set s = 1. For any ψ ∈ C∞c (Ω) we can compute by (A.4)

pi(e
itAψ)(x)

=

(∫ t

0

1
2
[pi(e

2sx)j](∂j∆r
2)(e2sx) ds

)
(eitAψ)(x) + [∂i(e

2tx)j](eitApjψ)(x).
(A.8)

Here and below we slightly abuse notation writing (eitApjψ)(x) rather than the

expression e
∫
···(pjψ)(e2tx). Then by (A.1) and Lemma A.5 for any |t| ≤ T

‖eitAψ‖2
H1 = ‖ψ‖2

H + ‖peitAψ‖2
H

≤ ‖ψ‖2
H + CT‖eitAψ‖2

H + CT‖eitApψ‖2
H

≤ CT‖ψ‖2
H1 .

By a density argument this implies eitAH1 ⊆ H1, and moreover for any ψ ∈ H1 and
|t| ≤ T

‖eitAψ‖2
H1 ≤ CT‖ψ‖2

H1 .

Thus (A.7) follows for s = 1. As for the strong continuity as H1 → H1, we can show
it first on C∞c (Ω) using (A.8) and standard regularity properties for flows, and then
extend it by the boundedness.

We can show the same results for s = −1 by taking the adjoint, and then the
assertions are proved for s ∈ (−1, 1) by interpolation. �
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Lemma A.7. There exists C > 0 such that for any |t| < 1

‖HeitA − eitAH‖B(H1,H−1) ≤ C|t|

Proof. As a quadratic form on C∞c (Ω), or as an operator C∞c (Ω)→ H−1,

HeitA − eitAH =

∫ t

0

d
ds

ei(t−s)AHeisA ds

=

∫ t

0

eisAi[H,A]ei(t−s)A ds.

Then by Lemma A.6 and the density of C∞c (Ω) ⊆ H1 the assertion follows. �

Lemma A.8. The following strong limit to the right exists in B(H1,H−1), and the
following equality holds

i[H,A] = s–lim
t→0

t−1[HeitA − eitAH]. (A.9)

Proof. For any ψ ∈ C∞c (Ω)

t−1(HeitA − e−itAH)ψ − i[H,A]ψ = t−1

∫ t

0

{
eisAi[H,A]ei(t−s)A − i[H,A]

}
ψ ds.

We use the strong continuity of eitA of Lemma A.6 to obtain (A.9) on C∞c (Ω).
Then by Lemma A.7 and the density argument, the strong limit of (A.9) exists in
B(H1,H−1). �

Remark A.9. Using terminology of [GGM] Lemmas A.6 and A.7 assert that H ∈
C1
(
AH1 , AH−1

)
. The statement (A.9) can be viewed as a consequence of this abstract

property, see [GGM, Proposition 2.29], however we gave the proof in our concrete
setting.

A.3. Applications. We shall henceforth use and consider the cutoff-functions of
(1.14) as being functions of the r from Condition A.2 (i.e. as composite functions).

Lemma A.10. Let φ ∈ D(H). Suppose eσrφ, eσrHφ ∈ H for some σ ≥ 0. Then

eσrφ ∈ D(H) and there exists a sequence φ̃m ∈ C∞c (Ω) such that, as m→∞,

‖eσr(φ− φ̃m)‖+ ‖peσr(φ− φ̃m)‖ → 0, (A.10)

Proof. Step I. We first prove that eσrχ̄νφ ∈ D(H). Since φ ∈ H1, we have

eσrχ̄νφ, e
σrχ̄νpjφ ∈ H,

and hence pje
σrχ̄νφ ∈ H by (A.1). Choose a sequence φn ∈ C∞c (Ω) such that, as

n→∞,

‖φ− φn‖+ ‖p(φ− φn)‖ → 0. (A.11)

Then by using (A.1) again we obtain

eσrχ̄νφn → eσrχ̄νφ, pje
σrχ̄νφn → pje

σrχ̄νφ in H.
This implies that eσrχ̄νφ ∈ H1. Note the distributional identity

Heσrχ̄νφ = eσrχ̄νHφ− eσr(σχ̄ν + χ̄′ν)∂
rφ− 1

2
(∆eσrχ̄ν)φ. (A.12)

Then since φ, pjφ,Hφ ∈ H, and by (A.1)

χν |∆r| = 1
2r
χν |(∆r2)− 2|dr|2| ≤ C, (A.13)
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we have Heσrχ̄νφ ∈ H. Hence eσrχ̄νφ ∈ D(H).

Step II. We next show that eσrpjφ ∈ H. Noting that eσrχ̄νφ ∈ H1 as in Step I, we
commute and estimate by Conditions A.1 and A.2

‖eσrχ̄νpφ‖2 = ‖peσrχ̄νφ‖2 − 〈|∇eσrχ̄ν |2 − 1
2
(∆e2σrχ̄2

ν)〉φ
≤ 4〈H〉eσrχ̄νφ + C1,σ‖eσrφ‖2.

Whence, by reversing a commutation used above,

‖eσrχ̄νpφ‖2 ≤ 4Re 〈eσrχ̄νφ, eσrχ̄νHφ〉+ C2,σ‖eσrφ‖2

≤ ‖eσrHφ‖2 + C3,σ‖eσrφ‖2.

Now we let ν → ∞ invoking the Lebesgue dominated convergence theorem, and
we conclude that eσrpjφ ∈ H.

Step III. We show that eσrφ ∈ H1, and then we complete the proof. Note that
pje

σrφ ∈ H by Step II. We choose a sequence φn ∈ C∞c (Ω) satisfying (A.11) as
n→∞, and consider the quantity

‖eσrφ− eσrχ̄νφn‖+ ‖p(eσrφ− eσrχ̄νφn)‖. (A.14)

The first term of (A.14) is bounded by

‖eσrφ− eσrχ̄νφn‖ ≤ ‖eσrχνφ‖+ ‖eσrχ̄ν(φ− φn)‖,
and the second term bounded by

‖p(eσrφ− eσrχ̄νφn)‖
≤ ‖peσrχνφ‖+ ‖peσrχ̄ν(φ− φn)‖
≤ ‖eσrχνpφ‖+ Cσ‖eσrχ̄2νφ‖+ ‖eσrχ̄νp(φ− φn)‖+ Cσ‖eσrχ̄2ν(φ− φn)‖.

We can make (A.14) arbitrarily small by first fixing ν large and then taking n large.
Whence we obtain a sequence of states φn(·) verifying

‖eσrφ− eσrχ̄ν(m)φn(m)‖+ ‖p(eσrφ− eσrχ̄ν(m)φn(m))‖ → 0 (A.15)

as m→∞, and hence eσrφ ∈ H1.
Finally using the distributional identity

Heσrφ = eσrHφ− σeσr∂rφ− 1
2
(∆eσr)φ

we learn, cf. (A.12) and (A.13), that Heσrφ ∈ H and hence that eσrφ ∈ D(H).

Clearly (A.10) follows from (A.15) by taking φ̃m = χ̄ν(m)φn(m). �

Corollary A.11. Suppose φ ∈ D(H) satisfies eσrφ, eσrHφ,Aeσrφ ∈ H for some
σ ≥ 0. Then eσrφ ∈ D(H)∩D(A), and for all ν ≥ 1 also ψ = χνe

σrφ ∈ D(H)∩D(A).

The following lemma is used in Subsection 2.3 to a state ψ of this type, i.e.
ψ = χνe

σrφ ∈ D(H)∩D(A). Another application is given in Appendix C (to derive
(C.12)).

Lemma A.12. Suppose ψ ∈ D(H) ∩ D(A). Then

〈i[H,A]〉ψ = i〈Hψ,Aψ〉 − i〈Aψ,Hψ〉.

Proof. By Lemma A.8

〈i[H,A]〉ψ = lim
t→0
〈t−1[HeitA − eitAH]〉ψ = i〈Hψ,Aψ〉 − i〈Aψ,Hψ〉.

�
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Appendix B. Mourre estimate

We shall prove Lemma 1.5 along the lines of the proof of [Sk2, Lemma 4.1, Corol-
lary 4.2, Proposition 4.4] and give some spectral consequences. The local uniformity
in energy property of the lemma is not included in the analogous version [Sk2,
Proposition 4.4], cf. Lemma 1.3. It is needed for the application in Appendix C.

B.1. Squeezing lemma. We introduce the following functions:

ηδ(t) = χ̄δ(|t|), F (t < C) = 1(−∞,C)(t) and F (t ≥ C) = 1− F (t < C).

For any c ∈ A we introduce

Hc = L2(Ωc)⊗ L2(Xc) = L2(Ωc + Xc),

and note that for all b ⊂ c there is an embedding Hc ⊂ Hb due to the relation
Ωc + Xc ⊂ Ωb + Xb. In particular H = Hamax ⊂ Hc ⊂ Hamin

= L2(X). Recall that
Hc = Hc ⊗ I + I ⊗ (1

2
p2
c) and Hamin = 0 on L2(Xamin) = C. By an approximation

argument the operator Hc is realized as a hard-core Hamiltonian, more precisely
as the operator associated with the (naturally defined) Dirichlet form on Q(Hc) :=
H1

0 (Ωc + Xc), cf. [Gri, Theorem 3.1]. Moreover a partial Fourier transform takes
it to the direct integral

∫
⊕(Hc + 1

2
ξ2
c )dξc. We shall also use the local compactness

result

∀c ∈ B : 〈xc〉−1〈pc〉−1 ∈ C(L2(Ωc)), (B.1)

where 〈pc〉 = (−∆xc + 1)1/2 is defined using the Dirichlet boundary condition. The
set of thresholds T is defined in terms of hard-core sub-Hamiltonians by (1.4) and
the function d is defined in terms of this set by (1.8).

Lemma B.1. Let ε ∈ (0, 1], c ∈ A and hc ∈ L∞(Xc) with compact support, κ > 0
and E ∈ R be given. Consider for δ > 0 the operator

Bc = hc(xc)F (1
2
p2
c < d(E + ε)− 2ε)ηδ(H − E) ∈ B(H,Hc).

For all small enough δ > 0 there exists K ∈ C(H,Hc) such that

‖Bc −K‖ ≤ κ. (B.2)

Proof. Step I. We shall reduce the proof to proving the “uniform squeezing” result
(B.7). Note that indeed Bc = (hc(xc)⊗Fc(p2

c))ηδ(H−E) ∈ B(H,Hc) with an obvious
meaning of Fc. We abbreviate Bc = (hc ⊗ Fc)ηδ(H − E). Obviously for c = amax it
follows from (B.1) that Bc is compact, so in that case we can put K = Bc. To treat
the general case we pick a family {ja}, a ∈ A \ {amax}, of functions on X each one
being smooth and homogeneous of degree 0 outside a compact set. We assume that
0 ≤ ja ≤ 1,

∑
a ja = 1 and that

∃C > 0∀b 6⊂ a : |x|ja(x) ≤ C|xb|ja(x); x ∈ X. (B.3)

We decompose

Bc =
∑
a

(hc ⊗ Fc)jaηδ(H − E), (B.4)

and distinguish between two cases: 1) c 6⊂ a, and 2) c ⊂ a. Terms in the case 1) are
compact due to (B.1) and (B.3). Now consider case 2). We consider for δ′ ≥ 2δ and
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large R > 1

jaηδ(H − E) = ηδ′(Ha − E)χR(|x|)jaηδ(H − E) +K +K(δ′)ηδ(H − E); (B.5)

K = χ̄R(|x|)jaηδ(H − E),

K(δ′) = χR(|x|)jaηδ′(H − E)− ηδ′(Ha − E)χR(|x|)ja.
Here K is compact due to (B.1), and therefore (hc ⊗ Fc)K is compact. We claim
that also K(δ′) is compact, however to see this the following mapping property is
needed: Due to (B.3) for R > 1 large enough

χR(|x|)ja ∈ B(Q(Ha), Q(H)) = B(H1
0 (Ωa + Xa), H

1
0 (Ω)).

Using a standard commutation formula, cf. [DeGé, Section C.2], we then obtain
that

K(δ′) =

∫
C
(Ha − z)−1

(
− iRe

(
p · ∇(χRja)

)
−
∑
b 6⊂a

VbχRja
)
(H − z)−1dµδ′(z),

showing that indeed K(δ′) ∈ C(H,Ha) ⊂ C(H,Hc), cf. (B.1).
We have shown that (hc ⊗ Fc)K(δ′) ∈ C(H,Hc), and it remains to consider the

contribution from the first term in (B.5). We claim that ‖(hc ⊗ Fc)ηδ′(Ha − E)‖ is
arbitrarily small provided δ′ ≥ 2δ is small enough finishing the proof. For that it
suffices (more precisely) to show that

lim
δ′→0

sup
ξa∈Xa

‖(hc ⊗ Fc)ηδ′(Ha + 1
2
ξ2
a − E)‖B(L2(Ωa),Hc) = 0. (B.6)

Reintroducing arguments, (B.6) in turn follows from

lim
δ′→0

sup
E′≤E

‖hc(xc)F (1
2
(pac)

2 < d(E ′ + ε)− 2ε)ηδ′(H
a − E ′)‖B(L2(Ωa),Hc) = 0. (B.7)

Note that since c ⊂ a we can write p2
c = (pac)

2 +p2
a, and therefore due to the property

d(t) ≤ d(s) + t− s for t ≥ s, (B.8)

indeed

F (1
2
p2
c < d(E + ε)− 2ε) = F (1

2
(pac)

2 < d(E + ε)− 2ε− 1
2
p2
a)

≤ F (1
2
(pac)

2 < d(E ′ + ε)− 2ε); E ′ = E − 1
2
p2
a.

Step II. We formulate a slightly stronger statement than (B.7). Introduce for c′ ⊂ a′

the set Pa′c′ = ∪c′⊂b⊂a′σpp(Hb) and the following distance function given for c ⊂ a
and for fixed E ∈ R,

dac(t) =

{
infτ∈Pac (t)(t− τ) for Pac (t) := Pac∩ ]−∞, t] 6= ∅,
max(1, E + 1− inf Pamax

amin
) for Pac (t) = ∅.

(B.9)

Now we replace d in the argument of the factor F in (B.7) by dac . More precisely we
introduce

F a
c = F a

c ((pac)
2) = F (1

2
(pac)

2 < dac(E
′ + ε)− 2ε),

and we claim the following statement for all ε > 0:

lim
δ→0

sup
E′≤E

‖Ba
c (δ, E ′, ε)‖B(L2(Ωa),Hc) = 0; (B.10)

Ba
c (δ, E ′, ε) := (hc(xc)⊗ F a

c ((pac)
2))ηδ(H

a − E ′).
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From the definitions (1.8) and (B.9) it follows that d(t) ≤ dac(t) for all t ≤ E+1 (for
ε ∈ (0, 1], E ∈ R and c ⊂ a 6= amax). Whence indeed (B.10) is stronger than (B.7).

Step III. We shall show (B.10) by induction in a ∈ A (more precisely in #a) con-
sidering arbitrary c ⊂ a allowing c = amin and (for convenience) also c = amax. We
shall use that the bound (B.8) is valid with d replaced by dac leading to the general
properties:

dac(t+ ε)− 2ε ≤ dac(s+ ε/2)− ε for |t− s| ≤ ε/2, (B.11a)

da
′′

c′′ (t) ≤ da
′

c′ (t) for c′′ ⊂ c′ ⊂ a′ ⊂ a′′ and t ≤ E + 1. (B.11b)

First in the case a = c (the start of induction) we look at fixed E ′ ≤ E only,
amounting to showing

lim
δ→0
‖Ba

c (δ, E ′, ε)‖B(L2(Ωa),Hc) = 0. (B.12)

In this case (pac)
2 = 0 so that we can assume that dac(E

′ + ε) > 2ε excluding that
E ′ ∈ σpp(Ha). Whence by compactness, cf. (B.1), indeed (B.12) follows for a = c.
Moreover we can show that the limit (B.12) is attained uniformly in E ′ ≤ E (still
for a = c): Suppose not. Then there exist δn → 0 and E ′n ≤ E such that

lim inf
n→∞

‖Ba
c (δn, E

′
n, ε)‖B(L2(Ωa),Hc) > 0. (B.13)

We can assume that E ′n → E ′. But due to (B.11a) we can decompose for any δ > 0
and for all large n

Ba
c (δn, E

′
n, ε) = BnB

a
c (δ, E ′, ε/2)ηδ′n(Ha − E ′n),

where Bn = F (1
2
(pac)

2 < dac(E
′
n + ε) − 2ε). The middle factor has arbitrarily small

norm (when taking δ → 0), while the other factors have norm ≤ 1. This contradicts
(B.13).

Now suppose we have proven (B.10) for all a ⊃ c with a 6= amax (the induction
hypothesis). Then it remains to verify the statement with a replaced by amax. By
the previous argument we can assume c ( amax. We proceed decomposing as in
(B.4) and (B.5) with E and Fc there replaced by E ′ ≤ E and F amax

c , respectively.
In case 1) c 6⊂ a we argue as above taking δ → 0 (the terms vanish identically for
E ′ ∈ σpp(H), and whence they vanish in the limit uniformly in E ′ ≤ E). In case
2) c ⊂ a there are again three terms to consider. The (compact) terms involving K
and K(δ′) (where δ′ ≥ 2δ) are treated as above (again the terms vanish identically
for E ′ ∈ σpp(H), and whence they vanish uniformly in E ′). So it remains to consider
the contribution from the first term. Using (B.8) (for damax

c ) and (B.11b) we estimate
(using that p2

c = (pac)
2 + p2

a, E
′ ≤ E and ε ≤ 1)

damax
c (E ′ + ε)− 1

2
p2
a ≤ damax

c (E ′ − 1
2
p2
a + ε) ≤ dac(E

′ − 1
2
p2
a + ε),

yielding the following bounds:

‖(hc ⊗ F amax
c )ηδ′(Ha − E ′)χR(|x|)jaηδ(H − E)‖

≤ ‖(hc ⊗ F amax
c )ηδ′(Ha − E ′)‖

≤ sup
E′′≤E′

‖Ba
c (δ′, E ′′, ε)‖

≤ sup
E′′≤E

‖Ba
c (δ′, E ′′, ε)‖.
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The last expression vanishes in the limit δ′ → 0 (by the induction hypothesis). So
by first choosing (and fixing) small δ′ > 0 (to make this expression small) and then
letting (0, δ′/2] 3 δ → 0 in agreement with the previous considerations the proof is
complete. �

Proof of Lemma 1.5. Let ε ∈ (0, 1] and I ⊂ R be compact (this ε will play the role
of the κ in the lemma). Clearly the second term to the right in (2.4) is small for all
large R. As for the first term we estimate

2
∑
b

qb,R p
2
b qb,R ≥ 4k − 4k

∑
b

qb,R χ̄ε(
1
2
p2
b − d(E + ε) + 4ε) qb,R;

k = max(0, d(E + ε)− 4ε).

By commutation we obtain that uniformly in E ∈ I and ε ∈ (0, 1]

qb,R χ̄ε(
1
2
p2
b − d(E + ε) + 4ε) qb,R = Re

(
q2
b,Rχ̄ε(

1
2
p2
b − d(E + ε) + 4ε)

)
+O(R−2).

Due to Lemma 1.2 (4) we can freely insert a factor of hb(xb) = χ̄r2R(|xb|) at the
factor of q2

b,R to the right. Using the Cauchy-Schwarz inequality and the bound∑
b q

4
b,R ≤ 1 we then obtain for any κ > 0

2
∑
b

qb,R p
2
b qb,R ≥ 4k − κ− 4k2

κ

∑
b

T ∗b Tb − CR−2;

Tb = hb(xb)χ̄ε(
1
2
p2
b − d(E + ε) + 4ε),

here C is a positive constant that can be chosen independently of E and ε as above.
In particular we have for all R ≥ R(κ) (with R(κ) large) that

i[H,AR] ≥ 4k − 2κ− 4k2

κ

∑
b

T ∗b Tb.

Next we localize in energy and obtain in agreement with Lemma B.1 that for any
given ε′ > 0 ∑

b

η2δ(H − E)T ∗b Tbη2δ(H − E) = K + T,

where K is compact and ‖T‖ ≤ ε′; this is provided δ > 0 is taken small enough.
Whence we have for all R ≥ R(κ) and all small δ > 0

ηδ(H − E)i[H,AR]ηδ(H − E) ≥ ηδ(H − E)
(
4k − 2κ− 4k2

κ
ε′ −K

)
ηδ(H − E)

with K compact. We fix κ, ε′ > 0 such that 2κ+ 4k2

κ
ε′ ≤ 4ε for all E ∈ I, leading to

ηδ(H − E)i[H,AR]ηδ(H − E)

≥ 4ηδ(H − E)
(

max(0, d(E + ε)− 4ε)− ε−K
)
ηδ(H − E)

≥ 4ηδ(H − E)
(
d(E + ε)− 5ε−K

)
ηδ(H − E)

for all R ≥ R(ε, I) > 0 and all sufficiently small δ > 0. We have proved Lemma 1.5
with κ = ε. �
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B.2. Spectral consequences. Although these properties are not needed for the
main theme of this paper we briefly discuss some consequences of Lemma 1.5 of
independent interest, cf. [Sk2, Corollary 4.5].

Corollary B.2. The following properties hold for the Hamiltonian H:

i) The set of thresholds T is closed and countable, and the set of eigenvalues
σpp(H) \ T is discrete in R \ T . These eigenvalues have finite multiplicity.

ii) The singularly continuous spectrum σsc(H) = ∅.

Proof. We will use tacitly below that i[H,A] is a commutator in the sense of Lemma
A.8. In particular (for i)), since σpp(Hamin) = {0}, it follows from Lemma 1.5 that
σpp(Ha)\{0} is discrete in R\{0} for all 2-body sub-Hamiltonians Ha. By induction,
repeating this argument, indeed i) follows.

As for ii) we note that the version of the Mourre estimate of Lemma 1.3 (with
L2(X) there replaced by H) follows from Lemma 1.5 and the closedness of T . Com-
bining this with the property H ∈ C2

(
AH1 , AH−1

)
, cf. Remark A.9, there is a

limiting absorption principle away from T which is immediately seen from the proof
of [BMP, Theorem 2.1], see also [ABG, Theorem 7.5.4]. In particular σsc(H) = ∅ in
agreement with [BMP, Theorem 2.1]. �

Remark B.3. The first part on the structure of the sets of thresholds and eigenval-
ues is also proved in [BGS, Gri]. The second part on absence of singularly continuous
spectrum is not discussed in [Gri]. It is proved in [BGS] under some regularity con-
ditions, see [BGS, Theorem A]. These conditions are not needed in our approach.

Appendix C. Exponential decay

In this appendix we are using the potential function r from Subsection 2.1 and
the operator A = AR given by (1.7). (The parameter R > 1 needs to be adjusted
according to an applicaton of Lemma 1.5.) We shall show

Proposition C.1. Suppose H does not have positive thresholds. If φ ∈ D(H)
satisfies Hφ = Eφ for some E > 0, then eσrφ ∈ H for any σ ≥ 0.

We shall use the (familiar) notation

ω = ∇r, pr = −i∂r = ω · p, pr = Re pr,

H1 = D
(
|H0|1/2

)
, H−1 = (H1)∗.

We shall use the cutoff-functions χν,ν′ = χνχ̄ν′ of (1.14) considered as functions of
the function r. We introduce the regularized weights

Θ(r) = Θσ,δ
m (r) = σr + δr(1 + r

m
)−1

for σ, δ ≥ 0 and m ≥ 1, and denote the first and the second derivatives in r by

Θ′ = σ + δ(1 + r
m

)−2, Θ′′ = −2δ
m

(1 + r
m

)−3. (C.1)

Set

HΘ = eΘHe−Θ : = H − 1
2
|dΘ|2 + ipΘ; (C.2)

pΘ = Re pΘ, pΘ = ∇Θ · p = Θ′pr.
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We are going to consider HΘ as an operator acting on suitable functions with
bounded support, see (C.11). For the following intermediate result the interpre-
tation is partially different (to be reversed in (C.12)). More precisely for the left
hand side of (C.3) stated below we have, cf. (2.11),

2 Im(A(HΘ − E)) = i[H,A] + r∂r|dΘ|2 + (pΘA+ ApΘ),

and here the first term to the right is given by its formal expression (2.3), that is

i[H,A] = p∇2r2p− 1
4
∆2r2 − 2r∂rV.

Note that due to (2.1b) this expression as well as the second term are bounded
quadratic forms on H1. Similarly the third term has a clean meaning as a form on
the set of functions in H1 with bounded support. The term Re(B(HΘ−E)) of (C.3)
is also a bounded quadratic form on H1.

Lemma C.2. Suppose H does not have positive thresholds. Let E > 0 and σ0 ≥ 0
be given. Then there exist R0 > 1 such that for all R ≥ R0 there exist ε, δ0 > 0: For
all σ ∈ [0, σ0] there exists B ∈ B(H) ∩ B(H−1) such that for all large ν ≥ 1, and all
ν ′ ≥ 2ν, δ ∈ (0, δ0] and m ≥ 1, as a quadratic form on H1,

χν,ν′2 Im(AR(HΘ − E))χν,ν′ ≥ χν,ν′
(
ε− Re(B(HΘ − E))

)
χν,ν′ . (C.3)

Proof. Fix any ε < 4E, ε > max(0, 4E − 96). We will apply Lemma 1.5 to κ =
κ′/16 > 0 given by ε = 4E−6κ′ and with I = E+[0, 1

2
σ2

0]. This fixesR0 > 1. Whence

we consider R ≥ R0 and energies Ẽ ∈ I. Fix such R. There is a neighbourhood
V = V(σ) of Ẽ := E + 1

2
σ2, σ ∈ [0, σ0], and a compact operator K = K(σ) on H

such that

f(H)∗i[H,AR]f(H) ≥ f(H)∗
(
4Ẽ − κ′ −K

)
f(H) for all f ∈ C∞c (V).

By using the Cauchy-Schwarz inequality and (2.3) we obtain from this bound that

for some positive constants C and δ̃

i[H,AR] ≥ 4E − 2κ′ −K − Cχ̄δ̃(|H − Ẽ|)〈H〉. (C.4)

Next by a compactness argument we can find C > 0 and δ̃ independent of σ ∈ [0, σ0]
such that (C.4) is valid for all σ ∈ [0, σ0]. Given these properties we fix

B := Cχ̄δ̃(|H − Ẽ|)〈H〉(H − Ẽ)−1.

Note that B = B(σ) ∈ B(H) ∩ B(H−1) with norms being uniformly bounded in
σ ∈ [0, σ0], and that we have shown

i[H,AR] ≥ 4E − 2κ′ −K −B(H − Ẽ). (C.5)

It remains to choose a δ0 ∈ (0, 1] independently of σ ∈ [0, σ0], to pick ν0 = ν0(σ) > 1
and to verify (C.3) uniformly in the parameters ν ′ ≥ 2ν ≥ 2ν0, δ ∈ (0, δ0] and
m ≥ 1.

We obtain from (C.5), omitting for simplicity here and below factors of χν,ν′ to
the left and to the right,

2 Im(A(HΘ − E)) ≥ 4E − 2κ′ −K − Re(B(HΘ − E))

+ r(∂r|dΘ|2)− 1
2

Re(B(|dΘ|2 − σ2))− Im(BpΘ) + 2 Re(ApΘ).
(C.6)

For ν ≥ ν0 (with ν0 sufficiently large)

χνKχν ≥ −κ′. (C.7)
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We shall demonstrate the lower bound −3κ′ for the sum of the last four terms on
the right hand side of (C.6) completing the proof. Let us recall that (2.1a) is valid
for the rescaled r = rR we are using here. Note also that according to (2.1c) we
have for some C0 > 0

||dr|2 − 1| ≤ C0〈x/R〉−2. (C.8)

By using these properties and (C.1) we obtain for any δ0 > 0 small enough

r∂r|dΘ|2 = (Θ′)2r∂r|dr|2 + 2rΘ′′Θ′|dr|4

≥ −4δ0(σ0 + δ0)|dr|4

≥ −4δ0(σ0 + δ0)(1 + C0)2 ≥ −κ′.

Similarly using (C.1), (C.8), the Cauchy-Schwarz inequality and the uniform
boundedness of B stated above we derive

−1
2
χν Re(B(|dΘ|2 − σ2))χν ≥ −κ′. (C.9)

This is for any small δ0 > 0 (smallness being independent of σ ∈ [0, σ0]) and for all
ν ≥ 1 sufficiently large.

Next, noting the expressions

A = rpr + (pr)∗r = 2prr + i|dr|2,
pΘ = Θ′pr − i

2
|dr|2Θ′′,

we compute with S =
(
|dr|2 + 1

2
B
)
Θ′ + r|dr|2Θ′′ and any ε′ > 0,

− Im(BpΘ) + 2 Re(ApΘ)

= 4prrΘ
′pr − 2 Im

(
Spr
)

+ Re
(
(|dr|4 + 1

2
B|dr|2)Θ′′

)
≥ 4pr{rΘ′ − 1

4ε′
|S|2}pr − ε′ + Re

(
(|dr|4 + 1

2
B|dr|2)Θ′′

)
.

We shall use this estimate with factors of χν,ν′ to the left and to the right heading
at proving (C.10) below. Fix ε′ = κ′/2. The contribution from the third term
on the right hand side is small, say ≥ −κ′/2, when δ0 is taken small (obviously
deduced from (C.1), (C.8) and the uniform boundedness of B). This fixes a small
δ0 ∈ (0, 1] (which indeed is independent of σ). The contribution from the first term
is non-negative as shown as follows: It suffices to show that

χν/2,2ν′{rΘ′ − 1
4ε′
|S|2}χν/2,2ν′ ≥ 0.

By factorizing

S = (T1 + T2)
√
rΘ′; T1 =

(
|dr|2 + 1

2
B
)√

Θ′/r, T2 = r|dr|2Θ′′/
√
rΘ′,

it suffices to show that

χν/2,2ν′{4ε′ − 2|T1|2 − 2|T2|2}χν/2,2ν′ ≥ 0.

This is valid for all ν ≥ 1 sufficiently large (uniformly in parameters). Hence, in
conclusion,

χν,ν′
(
−Im(BpΘ) + 2 Re(ApΘ)

)
χν,ν′ ≥ −κ′. (C.10)

By (C.6)–(C.10) the asserted inequality (C.3) is valid uniformly in the parameters
ν ′ ≥ 2ν ≥ 2ν0, δ ∈ (0, δ0] and m ≥ 1. �
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Proof of Proposition C.1. We let E and φ be as in the proposition. Set

σ0 = sup {σ ≥ 0| eσrφ ∈ H},

and assume σ0 < ∞. We fix (large) R > 1 and (small) ε, δ0 > 0 in agreement with
Lemma C.2 (with this σ0 as input). If σ0 > 0, we choose σ ∈ [0, σ0) and δ ∈ (0, δ0]
such that σ + δ > σ0. If σ0 = 0, we set σ = 0 and choose any δ ∈ (0, δ0]. In both
cases we have eσrφ ∈ H, and we fix B and ν ≥ 1 in agreement with Lemma C.2.
We then have the estimate (C.3) at our disposal for all ν ′ ≥ 2ν and m ≥ 1.

We shall apply this estimate in the state

φΘ = eΘφ = eΘσ,δm φ.

Due to Lemma A.10 we have φΘ ∈ H1.
We note, putting Rν = i[H,χν ] = Re (χ′νp

r),

i(HΘ − E)χν,ν′φΘ = iχν,ν′e
Θ(H − E)φ+ eΘ(Rν −Rν′)φ

= eΘ(Rν −Rν′)φ
(C.11)

In particular χν,ν′φΘ ∈ D(H) ∩ D(A). Due to Lemma A.12 and (C.3) we therefore
have

ε‖χν,ν′φΘ‖2 ≤ 2 Im〈Aχν,ν′φΘ, (HΘ − E)χν,ν′φΘ〉 − Re〈B(HΘ − E)〉χν,ν′φΘ
. (C.12)

Let us estimate the right hand side. For the first term of (C.12) we use (C.11) and
obtain

2 Im〈Aχν,ν′φΘ, (HΘ − E)χν,ν′φΘ〉
= −〈AφΘ, e

Θ(Rν −Rν′)φ〉+ h.c.

≤ Cν(‖χν/2φ‖2 + ‖χν/2pφ‖2)

+ Cm(‖
√
r/ν ′χν,2ν′e

σrφ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpφ‖2).

Here and below the constants Cν and Cm are independent of ν ′ ≥ 2ν, and in addition
Cν is independent of m ≥ 1. Similarly (using the boundedness of B) we can estimate
the second term of (C.12) as

−Re〈B(HΘ − E)〉χν,ν′φΘ
≤ ε

2
‖χν,ν′φΘ‖2 + Cν(‖χν/2φ‖2 + ‖χν/2pφ‖2)

+ Cm(‖
√
r/ν ′χν,2ν′e

σrφ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpφ‖2).

Hence we have proved (with new constants)

ε
2
‖χν,ν′φΘ‖2 ≤ Cν(‖χν/2φ‖2 + ‖χν/2pφ‖2)

+ Cm(‖
√
r/ν ′χν,2ν′e

σrφ‖2 + ‖
√
r/ν ′χν,2ν′e

σrpφ‖2).

Now let ν ′ →∞ in this estimate invoking Lebesgue’s dominated convergence the-
orem (and Lemma A.10). This makes the second term disappear, and consequently
we are left with the bound

‖χνeΘσ,δm φ‖2 ≤ 2Cν
ε

(‖χν/2φ‖2 + ‖χν/2pφ‖2). (C.13)

By letting m→∞ in (C.13) invoking Lebesgue’s monotone convergence theorem
we conclude that χνe

(σ+δ)rφ ∈ H. This is a contradiction since σ + δ > σ0. �
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