Non-standard analysis and hyperreal numbers

Sebastian Ørsted

QGM Retreat

October 29, 2016

Non-standard analysis and hyperreal numbers

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Theorem 1

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Theorem 1

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Proof.
$$d(uv) = (u + du)(v + dv) - uv$$

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Theorem 1

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Proof.
$$d(uv) = (u + du)(v + dv) - uv$$
$$= u \, dv + v \, du + du \, dv$$

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Theorem 1

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Proof.
$$d(uv) = (u + du)(v + dv) - uv$$
$$= u \, dv + v \, du + \frac{dv \, dv}{dv}$$

Suppose u(x) changes by du as x changes by the infinitesimal value dx > 0. Then the **derivative** is the fraction $\frac{du}{dx}$.

Theorem 1

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Proof.
$$d(uv) = (u + du)(v + dv) - uv$$
$$= u \, dv + v \, du + \frac{du}{dv}$$
and thus
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}.$$

The **integral** $\int_{a}^{b} f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

The **integral** $\int_{a}^{b} f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr^2 .

The **integral** $\int_{a}^{b} f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr^2 .

The **integral** $\int_{a}^{b} f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr^2 .

The **integral** $\int_a^b f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr^2 .

The area of the segment from x to x + dx is $dA = 2\pi x dx$.

The **integral** $\int_a^b f(x) dx$ is the infinite sum of the infinitesimal numbers f(x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr^2 .

The area of the segment from x to x + dx is $dA = 2\pi x dx$. The whole area is

$$A = \int dA = 2\pi \int_0^r x \, dx = \pi r^2. \quad \Box$$

Non-standard an<u>alysis</u>

Founded by Abraham Robinson in the 1960s.

э

Founded by Abraham Robinson in the 1960s.

He extends \mathbb{R} to $^*\mathbb{R}$, the **hyperreal numbers**, a "real closed field" containing infinitely great and small numbers.

Founded by Abraham Robinson in the 1960s.

He extends \mathbb{R} to $*\mathbb{R}$, the **hyperreal numbers**, a "real closed field" containing infinitely great and small numbers.

They can only be constructed abstractly using Zorn's Lemma. Uniqueness of $*\mathbb{R}$ is equivalent to the Continuum Hypothesis.

We write $x \approx y$ if x - y is infinitesimal.

æ

・ロト ・部ト ・ヨト ・ヨト

"The transfer principle": Any subset $X \subset \mathbb{R}^n$ has a unique natural extension ${}^*\!X \subset ({}^*\mathbb{R})^n$ with ${}^*\!X \cap \mathbb{R}^n = X$.

"The transfer principle": Any subset $X \subset \mathbb{R}^n$ has a unique natural extension ${}^*\!X \subset ({}^*\mathbb{R})^n$ with ${}^*\!X \cap \mathbb{R}^n = X$.

Any function f on $X \subset \mathbb{R}^n$ has a natural extension *f defined on *X. It satisfies all first-order relations that f does.

"The transfer principle": Any subset $X \subset \mathbb{R}^n$ has a unique natural extension ${}^*\!X \subset ({}^*\mathbb{R})^n$ with ${}^*\!X \cap \mathbb{R}^n = X$.

Any function f on $X \subset \mathbb{R}^n$ has a natural extension *f defined on *X. It satisfies all first-order relations that f does.

All relations and statements from \mathbb{R} have a natural extension to $*\mathbb{R}$. The new statement is *equivalent* to the old one.

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx .

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

The function u(x) is **continuous** at $x_0 \in \mathbb{R}$ if $u(x) \approx u(x_0)$ for all $x \approx x_0$.

Proof of $\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$.

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

Proof of
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
.
$$\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv$$

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

Proof of
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
.
 $\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv$
 $= u \Delta v + v \Delta u + \Delta u \Delta v$

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

Proof of
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
.

$$\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv$$

$$= u \Delta v + v \Delta u + \Delta u \Delta v$$
thus $\frac{d(uv)}{dx} = \operatorname{st}\left(\frac{\Delta(uv)}{\Delta x}\right) = \operatorname{st}\left(u\frac{\Delta v}{\Delta x} + v\frac{\Delta u}{\Delta x} + \Delta u\frac{\Delta v}{\Delta x}\right)$

A function u(x) is **differentiable** at $x_0 \in \mathbb{R}$ if

$$u'(x_0) = \operatorname{st}\left(\frac{\Delta u}{\Delta x}\right) = \operatorname{st}\left(\frac{u(x_0 + \Delta x) - u(x_0)}{\Delta x}\right)$$

exists for all infinitesimals $\Delta x \neq 0$ and is independent of Δx . In that case put $dx = \Delta x$ and du = u' dx. Now $\frac{du}{dx} = u'$ is a fraction once again.

Proof of
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
.

$$\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv$$

$$= u \Delta v + v \Delta u + \Delta u \Delta v$$
thus $\frac{d(uv)}{dx} = \operatorname{st}\left(\frac{\Delta(uv)}{\Delta x}\right) = \operatorname{st}\left(u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + v \frac{\Delta u}{\Delta x}\right) = u \frac{dv}{dx} + v \frac{du}{dx}$.

Given $\Delta x \in \mathbb{R}$, $\Delta x > 0$, and $f : [a, b] \to \mathbb{R}$ we put

$$\sum_{a}^{b} f(x) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x + f(x_n)(b-x_n),$$

where $x_0 = a$ and $x_i = x_{i-1} + \Delta x$.

Given
$$\Delta x \in \mathbb{R}$$
, $\Delta x >$ 0, and $f : [a, b]
ightarrow \mathbb{R}$ we put

$$\sum_{a}^{b} f(x) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x + f(x_n)(b-x_n),$$

where $x_0 = a$ and $x_i = x_{i-1} + \Delta x$.

$$\Delta x \mapsto \sum_{a}^{b} f(x) \Delta x$$
 has a natural extension to * \mathbb{R} .

æ

・ロト ・部ト ・ヨト ・ヨト

.

Given
$$\Delta x \in \mathbb{R}$$
, $\Delta x >$ 0, and $f : [a, b]
ightarrow \mathbb{R}$ we put

$$\sum_{a}^{b} f(x) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x + f(x_n)(b-x_n),$$

where $x_0 = a$ and $x_i = x_{i-1} + \Delta x$.

 $\Delta x \mapsto \sum_{a}^{b} f(x) \Delta x$ has a natural extension to * \mathbb{R} . Let

$$\int_{a}^{b} f(x) \, dx = \operatorname{st}\left(\sum_{a}^{b} f(x) \, dx\right)$$

for dx > 0 infinitesmal.

∃ >

Given
$$\Delta x \in \mathbb{R}$$
, $\Delta x >$ 0, and $f : [a, b]
ightarrow \mathbb{R}$ we put

$$\sum_{a}^{b} f(x) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x + f(x_n)(b-x_n),$$

where $x_0 = a$ and $x_i = x_{i-1} + \Delta x$.

 $\Delta x \mapsto \sum_{a}^{b} f(x) \Delta x$ has a natural extension to * \mathbb{R} . Let

$$\int_{a}^{b} f(x) \, dx = \operatorname{st}\left(\sum_{a}^{b} f(x) \, dx\right)$$

for dx > 0 infinitesmal. Call f integrabel if $\int_a^b f(x) dx$ exists and is independent of dx.

If $f: [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Non-standard analysis and hyperreal numbers

If $f: [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Proof. Let $c \in (a, b)$ and $u \in (0, b - c)$. Then there exist $m, M \in [c, c + u]$ such that $f(m) \le f(t) \le f(M)$ for $t \in [c, c + u]$.

If $f : [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Proof. Let $c \in (a, b)$ and $u \in (0, b - c)$. Then there exist $m, M \in [c, c + u]$ such that $f(m) \leq f(t) \leq f(M)$ for $t \in [c, c + u]$. Then we have

$$uf(m) = \int_c^{c+u} f(m) \, dx \leq \int_c^{c+u} f(x) \, dx \leq \int_c^{c+u} f(M) \, dx = uf(M).$$

If $f : [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Proof. Let $c \in (a, b)$ and $u \in (0, b - c)$. Then there exist $m, M \in [c, c + u]$ such that $f(m) \leq f(t) \leq f(M)$ for $t \in [c, c + u]$. Then we have

$$uf(m) = \int_c^{c+u} f(m) \, dx \leq \int_c^{c+u} f(x) \, dx \leq \int_c^{c+u} f(M) \, dx = uf(M).$$

In other words: $\forall u \in (0, b - c) \quad \exists m, M \in [c, c + u]$:

$$uf(m) \leq F(c+u) - F(c) \leq uf(M).$$

If $f : [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Proof. Let $c \in (a, b)$ and $u \in (0, b - c)$. Then there exist $m, M \in [c, c + u]$ such that $f(m) \leq f(t) \leq f(M)$ for $t \in [c, c + u]$. Then we have

$$uf(m) = \int_c^{c+u} f(m) \, dx \leq \int_c^{c+u} f(x) \, dx \leq \int_c^{c+u} f(M) \, dx = uf(M).$$

In other words: $\forall u \in (0, b - c) \quad \exists m, M \in [c, c + u]$:

$$uf(m) \leq F(c+u) - F(c) \leq uf(M).$$

L

Theorem 3 (Fundamental Theorem of Calculus)

If $f : [a, b] \to \mathbb{R}$ is continuous, then $F(t) = \int_a^t f(x) dx$ is differentiable for $t \in (a, b)$ with F' = f.

Proof. Let $c \in (a, b)$ and $u \in (0, b - c)$. Then there exist $m, M \in [c, c + u]$ such that $f(m) \leq f(t) \leq f(M)$ for $t \in [c, c + u]$. Then we have

$$uf(m) = \int_c^{c+u} f(m) \, dx \leq \int_c^{c+u} f(x) \, dx \leq \int_c^{c+u} f(M) \, dx = uf(M).$$

In other words: $\forall u \in *(0, b - c) \quad \exists m, M \in *[c, c + u]$:

$$uf(m) \le F(c+u) - F(c) \le uf(M).$$

$$u \approx 0: \qquad f(c) \approx f(m) \le \frac{F(c+u) - F(c)}{u} \le f(M) \approx f(c).$$

Let [x] be the integral part of $x \in \mathbb{R}$. Then $[\cdot]$ has a natural extension to $*\mathbb{R}$. Let $*\mathbb{Z}$ be the set of all $x \in *\mathbb{R}$ satisfying [x] = x.

Let [x] be the integral part of $x \in \mathbb{R}$. Then $[\cdot]$ has a natural extension to $*\mathbb{R}$. Let $*\mathbb{Z}$ be the set of all $x \in *\mathbb{R}$ satisfying [x] = x. Similarly we define $*\mathbb{N}$.

Let [x] be the integral part of $x \in \mathbb{R}$. Then $[\cdot]$ has a natural extension to $*\mathbb{R}$. Let $*\mathbb{Z}$ be the set of all $x \in *\mathbb{R}$ satisfying [x] = x. Similarly we define $*\mathbb{N}$.

Then $*\mathbb{N}$ satisfies Peano's axioms; from the inside you cannot tell the difference between \mathbb{N} and $*\mathbb{N}$.

Let [x] be the integral part of $x \in \mathbb{R}$. Then $[\cdot]$ has a natural extension to $*\mathbb{R}$. Let $*\mathbb{Z}$ be the set of all $x \in *\mathbb{R}$ satisfying [x] = x. Similarly we define $*\mathbb{N}$.

Then *N satisfies Peano's axioms; from the inside you cannot tell the difference between N and *N.

A sequence $a: \mathbb{N} \to \mathbb{R}$ has a natural extension $a: *\mathbb{N} \to *\mathbb{R}$.

Let [x] be the integral part of $x \in \mathbb{R}$. Then $[\cdot]$ has a natural extension to $*\mathbb{R}$. Let $*\mathbb{Z}$ be the set of all $x \in *\mathbb{R}$ satisfying [x] = x. Similarly we define $*\mathbb{N}$.

Then \mathbb{N} satisfies Peano's axioms; from the inside you cannot tell the difference between \mathbb{N} and \mathbb{N} .

A sequence $a: \mathbb{N} \to \mathbb{R}$ has a natural extension $a: *\mathbb{N} \to *\mathbb{R}$. The sequence $\{a_n\}_{n\in\mathbb{N}}$ converges to *a* if we have $a_H \approx a$ for all infinitely great $H \in *\mathbb{N}$.

Theorem 4 (Intermediate Value Theorem)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Non-standard analysis and hyperreal numbers

Theorem 4 (Intermediate Value Theorem)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Proof. Suppose $f(a) \le s \le f(b)$. For $n \in \mathbb{Z}$, $n \ge 1$, let $\delta = (b - a)/n$.

Non-standard analysis and hyperreal numbers

Theorem 4 (Intermediate Value <u>Theorem</u>)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Proof. Suppose $f(a) \le s \le f(b)$. For $n \in \mathbb{Z}$, $n \ge 1$, let $\delta = (b-a)/n$. Then there exists $m \in \mathbb{Z}$, $0 \le m < n$ such that

 $f(a+m\delta) \leq s \leq f(a+(m+1)\delta).$

Theorem 4 (Intermediate Value <u>Theorem</u>)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Proof. Suppose $f(a) \le s \le f(b)$. For $n \in \mathbb{Z}$, $n \ge 1$, let $\delta = (b-a)/n$. Then there exists $m \in \mathbb{Z}$, $0 \le m < n$ such that

 $f(a+m\delta) \leq s \leq f(a+(m+1)\delta).$

Theorem 4 (Intermediate Value Theorem)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Proof. Suppose $f(a) \le s \le f(b)$. For $n \in \mathbb{Z}$, $n \ge 1$, let $\delta = (b-a)/n$. Then there exists $m \in \mathbb{Z}$, $0 \le m < n$ such that

$$f(a+m\delta) \leq s \leq f(a+(m+1)\delta).$$

Choose *n* infinite and define $c = st(a + m\delta)$.

Theorem 4 (Intermediate Value Theorem)

If $f : [a, b] \to \mathbb{R}$ is continuous and s is a point between f(a)and f(b), there exists a $c \in [a, b]$ such that f(c) = s.

Proof. Suppose $f(a) \le s \le f(b)$. For $n \in \mathbb{Z}$, $n \ge 1$, let $\delta = (b-a)/n$. Then there exists $m \in \mathbb{Z}$, $0 \le m < n$ such that

$$f(a+m\delta)\leq s\leq f(a+(m+1)\delta).$$

Choose *n* infinite and define $c = st(a + m\delta)$. Taking standard parts we obtain

$$f(c) \leq s \leq f(c),$$

since f is continuous.

- If $U \in F$ and $U \subset V$ then $V \in F$.
- If $U, V \in F$ then $U \cap V \in F$.
- $\emptyset \notin F$.

(日) (同) (三) (三)

- If $U \in F$ and $U \subset V$ then $V \in F$.
- If $U, V \in F$ then $U \cap V \in F$.
- $\emptyset \notin F$.

Call F an ultrafilter if we also have

• For all $U \in \mathcal{P}(\mathbb{N})$, either $U \in F$ or $\mathbb{N} \setminus U \in F$.

- If $U \in F$ and $U \subset V$ then $V \in F$.
- If $U, V \in F$ then $U \cap V \in F$.
- $\emptyset \notin F$.

Call F an ultrafilter if we also have

• For all $U \in \mathcal{P}(\mathbb{N})$, either $U \in F$ or $\mathbb{N} \smallsetminus U \in F$.

Call it free if

• F contains no finite sets.

- If $U \in F$ and $U \subset V$ then $V \in F$.
- If $U, V \in F$ then $U \cap V \in F$.
- $\emptyset \notin F$.

Call F an ultrafilter if we also have

• For all $U \in \mathcal{P}(\mathbb{N})$, either $U \in F$ or $\mathbb{N} \setminus U \in F$.

Call it free if

• F contains no finite sets.

\uparrow

F contains no points.

- If $U \in F$ and $U \subset V$ then $V \in F$.
- If $U, V \in F$ then $U \cap V \in F$.
- $\emptyset \notin F$.

Call F an ultrafilter if we also have

```
• For all U \in \mathcal{P}(\mathbb{N}), either U \in F or \mathbb{N} \smallsetminus U \in F.
```

Call it free if

• F contains no finite sets.

```
\label{eq:F} \begin{array}{c} \mbox{$1$}\\ F \text{ contains no points.}\\ \\ \mbox{$1$}\\ F \text{ is not of the form $F=\{U\subset\mathbb{N}\mid u\in U$} \text{ for any $u$.} \end{array}
```