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Seventeenth century

Differentiation

Suppose u(x) changes by du as x changes by the infinitesimal

value dx > 0. Then the derivative is the fraction %.
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Differentiation
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If u og v are differentiable, then uv is differentiable with
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Seventeenth century
Differentiation
Suppose u(x) changes by du as x changes by the infinitesimal

value dx > 0. Then the derivative is the fraction %.

If u og v are differentiable, then uv is differentiable with

d d d
= ug v
Proof. d(uv) = (u+du)(v+dv) —uv
= udv+ vdu+dadw
and thus d(d‘;") = u% + v%. O
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Seventeenth century

Integration

The integral fab f(x) dx is the infinite sum of the infinitesimal
numbers f(x) dx as x runs from a to b.
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Seventeenth century

Integration
The integral fab f(x) dx is the infinite sum of the infinitesimal
numbers f(x) dx as x runs from a to b.

The area of a disk with radius r is 7r=.

2
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The area of the segment from x
to x + dx is dA = 27wxdx. The
whole area is

A:/dA:27T/ xdx =mr?. [
0
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Non-standard analysis
Non-standard analysis

Founded by Abraham Robinson in the 1960s.
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Founded by Abraham Robinson in the 1960s.
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containing infinitely great and small numbers.
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Non-standard analysis
Non-standard analysis

Founded by Abraham Robinson in the 1960s.

He extends R to *R, the hyperreal numbers, a “real closed field”
containing infinitely great and small numbers.

They can only be constructed abstractly using Zorn's Lemma.
Uniqueness of *R is equivalent to the Continuum Hypothesis.

S@
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Non-standard analysis

We write x & y if x — y is infinitesimal.
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Non-standard analysis

We write x & y if x — y is infinitesimal. For all finite x € *R there
exists a unique standard part st(x) € R such that x ~ st(x).
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eenth centur Non-standard analysis Non-standard calculus Construction of

We write x & y if x — y is infinitesimal. For all finite x € *R there
exists a unique standard part st(x) € R such that x ~ st(x).

“The transfer principle”: Any subset X C R" has a unique
natural extension *X C (*R)” with *X NR" = X.
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Non-standard calculus Construction of

We write x & y if x — y is infinitesimal. For all finite x € *R there
exists a unique standard part st(x) € R such that x ~ st(x).

“The transfer principle”: Any subset X C R” has a unique
natural extension *X C (*R)” with *X NR" = X.

Any function f on X C R" has a natural extension *f defined on *X.
It satisfies all first-order relations that f does.
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Seventeenth century Non-standard analysis Non-standard calculus Construction of

We write x & y if x — y is infinitesimal. For all finite x € *R there
exists a unique standard part st(x) € R such that x ~ st(x).

“The transfer principle”: Any subset X C R” has a unique
natural extension *X C (*R)” with *X NR" = X.

Any function f on X C R" has a natural extension *f defined on *X.
It satisfies all first-order relations that f does.

All relations and statements from R have a natural extension to *R.
The new statement is equivalent to the old one.
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Non-standard calculus
Non-standard calculus

A function u(x) is differentiable at xo € R if

U (x0) = st(%) = st(w)

X

exists for all infinitesimals Ax # 0 and is independent of Ax.
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A function u(x) is differentiable at xo € R if

U (x0) = st(%) = st(w)

X

exists for all infinitesimals Ax # 0 and is independent of Ax. In that
case put dx = Ax and du = v’ dx. Now % = ' is a fraction once

again.

The function u(x) is continuous at xp € R if u(x) =~ u(xp) for
all x =~ xg.
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Non-standard calculus

A function u(x) is differentiable at xo € R if

U (x0) = st(%) = st(w)

X

exists for all infinitesimals Ax 7& 0 and is independent of Ax. In that
case put dx = Ax and du = v’ dx. Now Z” = ' is a fraction once
again.

The function u(x) is continuous at xp € R if u(x) =~ u(xp) for
all x =~ xg.

Proof of d("") = ud" + de'

Non-standard analysis and hyperreal numbers S@



Non-standard calculus
Non-standard calculus

A function u(x) is differentiable at xo € R if

U (x0) = st(%) — st(w)

Ax

exists for all infinitesimals Ax # 0 and is independent of Ax. In that
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again.
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Non-standard calculus
Non-standard calculus

A function u(x) is differentiable at xo € R if

U (x0) = st(%) — st(w)

Ax

exists for all infinitesimals Ax # 0 and is independent of Ax. In that
case put dx = Ax and du = v’ dx. Now % = ' is a fraction once
again.

The function u(x) is continuous at xp € R if u(x) =~ u(xp) for
all x =~ xg.

d(uv) __ . dv du
Proof of o = Ug tvg-

A(uv) = (u+ Au)(v+ Av) — uv
=ulAv+vAu+ Aulv

d(uv) _ A(uv)y _ Av A Av
thus T =st(S7) =st(uBY + vRL + AuRY)
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Non-standard calculus
Non-standard calculus

A function u(x) is differentiable at xo € R if

U (x0) = st(%) — st(w)

Ax

exists for all infinitesimals Ax # 0 and is independent of Ax. In that
case put dx = Ax and du = v’ dx. Now % = ' is a fraction once
again.

The function u(x) is continuous at xp € R if u(x) =~ u(xp) for
all x =~ xg.

d(uv) __ . dv du
Proof of o = Ug tvg-

A(uv) = (u+ Au)(v+ Av) — uv
=ulAv+vAu+ Aulv

this 90— st (200) = t(uBt + v+ Bu) = u v O
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Non-standard calculus
Integration

Given Ax € R, Ax >0, and f: [a, b] = R we put
b

D F(x) Dx = F(x0) Ax + -+ F(xn-1) Dx + F(xa)(b — Xp),

where xo = a and x; = x;_1 + Ax.
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Ax — Zg f(x) Ax has a natural extension to *R.

Non-standard analysis and hyperreal numbers S@



Non-standard calculus
Integration

Given Ax € R, Ax >0, and f: [a, b] = R we put

b
D F(x) Dx = F(x0) Ax + -+ F(xn-1) Dx + F(xa)(b — Xp),

where xo = a and x; = x;_1 + Ax.
Ax — Zg f(x) Ax has a natural extension to *R. Let

b b
/a f(x)dx =st (Z f(x) dx)

a

for dx > 0 infinitesmal.
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Non-standard calculus
Integration

Given Ax € R, Ax >0, and f: [a, b] = R we put

b
D F(x) Dx = F(x0) Ax + -+ F(xn-1) Dx + F(xa)(b — Xp),

where xo = a and x; = x;_1 + Ax.

Ax — Zs f(x) Ax has a natural extension to *R. Let

b b
/a f(x)dx =st (Z f(x) dx)

for dx > 0 infinitesmal. Call f integrabel if fab f(x) dx exists and is
independent of dx.

Non-standard analysis and hyperreal numbers S@



Non-standard calculus

Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] = R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.
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Non-standard calculus

Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] — R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.

Proof. Let c € (a,b) and u € (0, b — ¢). Then there exist
m, M € [c, c + u] such that f(m) < f(t) < f(M) for t € [c,c+ u].
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Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] — R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.

Proof. Let c € (a,b) and u € (0, b — ¢). Then there exist
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Non-standard calculus

Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] — R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.

Proof. Let c € (a,b) and u € (0, b — ¢). Then there exist
m, M € [c, c + u] such that f(m) < f(t) < f(M) for t € [c,c+ u].
Then we have

uf(m) = /CC+U f(m)dx < /CC+U f(x)dx < /CC+U f(M) dx = uf(M).

In other words: Yu € (0,b—c) Im,M € [c,c+ u]:

uf(m) < F(c + u) — F(c) < uf(M).
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Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] — R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.

Proof. Let c € (a,b) and u € (0, b — ¢). Then there exist
m, M € [c, c + u] such that f(m) < f(t) < f(M) for t € [c,c+ u].
Then we have
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Non-standard calculus

Theorem 3 (Fundamental Theorem of Calculus)

If f: [a, b] — R is continuous, then F(t) = f; f(x)dx is
differentiable for t € (a, b) with F' = f.

Proof. Let c € (a,b) and u € (0, b — ¢). Then there exist
m, M € [c, c + u] such that f(m) < f(t) < f(M) for t € [c,c+ u].
Then we have

ctu c+u c+u
uf(m):/ f(m)dxg/ f(x)dxg/ f(M) dx = uf(M).
In other words: Yu € *(0,b—c) 3Im,M € *[c,c+ u]:

uf(m) < F(c + u) — F(c) < uf(M).

F(c+u)—F(c)

Um0 f(c)~ f(m) < < f(M) ~ f(c). O
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Non-standard calculus
Hyperintegers

Let [x] be the integral part of x € R. Then [ -] has a natural
extension to *R. Let *Z be the set of all x € *R satisfying [x] = x.
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Let [x] be the integral part of x € R. Then [ -] has a natural
extension to *R. Let *Z be the set of all x € *R satisfying [x] = x.
Similarly we define *N.
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Non-standard calculus
Hyperintegers

Let [x] be the integral part of x € R. Then [ -] has a natural
extension to *R. Let *Z be the set of all x € *R satisfying [x] = x.

Similarly we define *N.

Then *N satisfies Peano’s axioms; from the inside you cannot tell the
difference between N and *N.

S@
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Hyperintegers

Let [x] be the integral part of x € R. Then [ -] has a natural
extension to *R. Let *Z be the set of all x € *R satisfying [x] = x.
Similarly we define *N.

Then *N satisfies Peano’s axioms; from the inside you cannot tell the
difference between N and *N.

A sequence a: N — R has a natural extension a: *N — *R.
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Non-standard calculus
Hyperintegers

Let [x] be the integral part of x € R. Then [ -] has a natural
extension to *R. Let *Z be the set of all x € *R satisfying [x] = x.
Similarly we define *N.

Then *N satisfies Peano’s axioms; from the inside you cannot tell the
difference between N and *N.

A sequence a: N — R has a natural extension a: *N — *R. The
sequence {ap}nen converges to a if we have ay ~ a for all
infinitely great H € *N.

S@
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Non-standard calculus

Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.
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Non-standard calculus

Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.

Proof. Suppose f(a) <s < f(b). Forne Z, n>1, let
d=(b—a)/n.
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Non-standard calculus

Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.

Proof. Suppose f(a) <s < f(b). Forne Z, n>1, let
d = (b — a)/n. Then there exists m € Z,0 < m < n such that

f(a4+ mé) <s < f(a+ (m—+1)9d).
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Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.

Proof. Suppose f(a) < s < f(b). For n€ *Z, n > 1, let
d = (b — a)/n. Then there exists m € *Z,0 < m < n such that

f(a+ mé) <s < f(a+ (m—+1)0).
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Non-standard calculus

Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.

Proof. Suppose f(a) < s < f(b). For n€ *Z, n > 1, let
d = (b — a)/n. Then there exists m € *Z,0 < m < n such that

f(a+ mé) <s < f(a+ (m—+1)0).

Choose n infinite and define ¢ = st(a + md).
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Non-standard calculus

Theorem 4 (Intermediate Value Theorem)

If f: [a, b] — R is continuous and s is a point between f(a)
and f(b), there exists a ¢ € [a, b| such that f(c) = s.

Proof. Suppose f(a) < s < f(b). For n€ *Z, n > 1, let
d = (b — a)/n. Then there exists m € *Z,0 < m < n such that

f(a+ mé) <s < f(a+ (m—+1)0).

Choose n infinite and define ¢ = st(a + md). Taking standard parts

we obtain
f(c) <s < f(c),

since f is continuous. OJ
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Construction of *R

A filter on N is a non-empty subset F C P(N) satisfying
e lf Ue Fand U C V then V € F.
o lfU,VeFthen UNV e€F.
o J¢F.
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o J¢F.
Call F an ultrafilter if we also have
@ For all U € P(N), either U€ ForN~\ U € F.
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o lfU,VeFthen UNV e€F.
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Call F an ultrafilter if we also have
@ For all U € P(N), either U€ ForN~\ U € F.
Call it free if
@ F contains no finite sets.
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A filter on N is a non-empty subset F C P(N) satisfying
e lfU€F and UC V then V €F.
o lfU,VeFthen UNV e€F.
o J¢F.
Call F an ultrafilter if we also have
@ For all U € P(N), either U€ ForN~\ U € F.
Call it free if

@ F contains no finite sets.

0

F contains no points.
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Seventeenth centur Non-standard analysis Non-standard calculus Construction of *R

A filter on N is a non-empty subset F C P(N) satisfying
e lfU€F and UC V then V €F.
o lfU,VeFthen UNV e€F.
o J¢F.
Call F an ultrafilter if we also have
@ For all U € P(N), either U€ ForN~\ U € F.
Call it free if

@ F contains no finite sets.

0

F contains no points.

0

F is not of the foom F ={U CN|u e U} for any u.
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