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Seventeenth century Non-standard analysis Non-standard calculus Construction of ∗R

Differentiation

Suppose u(x) changes by du as x changes by the infinitesimal
value dx > 0. Then the derivative is the fraction du

dx .

Theorem 1
If u og v are differentiable, then uv is differentiable with

d(uv)
dx = u dv

dx + v du
dx

Proof. d(uv) = (u + du)(v + dv)− uv

= u dv + v du + du dv

and thus d(uv)
dx = u dv

dx + v du
dx .
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Integration

The integral
∫ b
a f (x) dx is the infinite sum of the infinitesimal

numbers f (x) dx as x runs from a to b.

Theorem 2

The area of a disk with radius r is πr2.

x x + dx

The area of the segment from x
to x + dx is dA = 2πx dx . The
whole area is

A =

∫
dA = 2π

∫ r

0
x dx = πr2.
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Non-standard analysis

Founded by Abraham Robinson in the 1960s.

He extends R to ∗R, the hyperreal numbers, a “real closed field”
containing infinitely great and small numbers.

They can only be constructed abstractly using Zorn’s Lemma.
Uniqueness of ∗R is equivalent to the Continuum Hypothesis.
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We write x ≈ y if x − y is infinitesimal.

For all finite x ∈ ∗R there
exists a unique standard part st(x) ∈ R such that x ≈ st(x).

“The transfer principle” : Any subset X ⊂ Rn has a unique
natural extension ∗X ⊂ (∗R)n with ∗X ∩ Rn = X .

Any function f on X ⊂ Rn has a natural extension ∗f defined on ∗X .
It satisfies all first-order relations that f does.

All relations and statements from R have a natural extension to ∗R.
The new statement is equivalent to the old one.
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Non-standard calculus

A function u(x) is differentiable at x0 ∈ R if

u′(x0) = st
(

∆u
∆x

)
= st

(u(x0+∆x)−u(x0)
∆x

)
exists for all infinitesimals ∆x 6= 0 and is independent of ∆x .

In that
case put dx = ∆x and du = u′ dx . Now du

dx = u′ is a fraction once
again.

The function u(x) is continuous at x0 ∈ R if u(x) ≈ u(x0) for
all x ≈ x0.

Proof of d(uv)
dx = u dv

dx + v du
dx .

∆(uv) = (u + ∆u)(v + ∆v)− uv

= u ∆v + v ∆u + ∆u ∆v

thus d(uv)
dx = st

(∆(uv)
∆x

)
= st

(
u∆v

∆x + v ∆u
∆x + ∆u∆v

∆x

)
= u dv

dx + v du
dx .
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Integration

Given ∆x ∈ R, ∆x > 0, and f : [a, b]→ R we put

b∑
a

f (x) ∆x = f (x0) ∆x + · · ·+ f (xn−1) ∆x + f (xn)(b − xn),

where x0 = a and xi = xi−1 + ∆x .

∆x 7→
∑b

a f (x) ∆x has a natural extension to ∗R. Let

∫ b

a
f (x) dx = st

( b∑
a

f (x) dx
)

for dx > 0 infinitesmal. Call f integrabel if
∫ b
a f (x) dx exists and is

independent of dx .
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Theorem 3 (Fundamental Theorem of Calculus)

If f : [a, b]→ R is continuous, then F (t) =
∫ t
a f (x) dx is

differentiable for t ∈ (a, b) with F ′ = f .

Proof. Let c ∈ (a, b) and u ∈ (0, b − c). Then there exist
m,M ∈ [c, c + u] such that f (m) ≤ f (t) ≤ f (M) for t ∈ [c , c + u].
Then we have

uf (m) =

∫ c+u

c
f (m) dx ≤

∫ c+u

c
f (x) dx ≤

∫ c+u

c
f (M) dx = uf (M).

In other words: ∀u ∈ (0, b − c) ∃m,M ∈ [c , c + u] :

uf (m) ≤ F (c + u)− F (c) ≤ uf (M).

u ≈ 0: f (c) ≈ f (m) ≤ F (c + u)− F (c)

u
≤ f (M) ≈ f (c).
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In other words: ∀u ∈ (0, b − c) ∃m,M ∈ [c , c + u] :

uf (m) ≤ F (c + u)− F (c) ≤ uf (M).

u ≈ 0: f (c) ≈ f (m) ≤ F (c + u)− F (c)

u
≤ f (M) ≈ f (c).
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Hyperintegers

Let [x ] be the integral part of x ∈ R. Then [ · ] has a natural
extension to ∗R. Let ∗Z be the set of all x ∈ ∗R satisfying [x ] = x .

Similarly we define ∗N.

Then ∗N satisfies Peano’s axioms; from the inside you cannot tell the
difference between N and ∗N.

A sequence a : N→ R has a natural extension a : ∗N→ ∗R. The
sequence {an}n∈N converges to a if we have aH ≈ a for all
infinitely great H ∈ ∗N.
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Theorem 4 (Intermediate Value Theorem)

If f : [a, b]→ R is continuous and s is a point between f (a)
and f (b), there exists a c ∈ [a, b] such that f (c) = s.

Proof. Suppose f (a) ≤ s ≤ f (b). Choose n infinite and define
c = st(a + mδ). Taking standard parts we obtain

f (c) ≤ s ≤ f (c),

since f is continuous.
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A filter on N is a non-empty subset F ⊂ P(N) satisfying
If U ∈ F and U ⊂ V then V ∈ F .
If U,V ∈ F then U ∩ V ∈ F .
∅ /∈ F .

Call F an ultrafilter if we also have
For all U ∈ P(N), either U ∈ F or Nr U ∈ F .

Call it free if
F contains no finite sets.

m
F contains no points.

m
F is not of the form F = {U ⊂ N | u ∈ U } for any u.
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