TORSION GEOMETRY, SUPERCONFORMAL SYMMETRY AND T-DUALITY

Andrew Swann

University of Southern Denmark
swann@imada.sdu.dk

May 2008 / Bilbao
OUTLINE

1 TORSION GEOMETRY

- Metric geometry with torsion
- KT Geometry
- HKT Geometry
Outline

1. Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
1. **Torsion Geometry**
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. **Superconformal Symmetry**
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3. **T-duality**
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
1 Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2 Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3 T-duality
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
Torsion Geometry

Metric geometry with torsion

- Metric g, connection ∇, torsion $T^\nabla (X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$
- $\nabla g = 0$
Metric geometry with torsion

- Metric g, connection ∇, torsion
 $$T^\nabla(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$
- $\nabla g = 0$
- $c(X,Y,Z) = g(T^\nabla(X,Y),Z)$ a three-form
Metric geometry with torsion

- metric g, connection ∇, torsion

 \[T^\nabla(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] \]
- $\nabla g = 0$
- $c(X, Y, Z) = g(T^\nabla(X, Y), Z)$ a three-form

\[\nabla = \nabla^{LC} + \frac{1}{2} c \]

- any $c \in \Omega^3(M)$ will do
- ∇, ∇^{LC} same geodesics/dynamics
- *strong* if $dc = 0$
Torsion Geometry

Metric geometry with torsion
- Metric g, connection ∇, torsion $T^\nabla(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$
- $\nabla g = 0$
- $c(X, Y, Z) = g(T^\nabla(X, Y), Z)$ a three-form

\[\nabla = \nabla^{LC} + \frac{1}{2} c \]

- Any $c \in \Omega^3(M)$ will do
- ∇, ∇^{LC} same geodesics/dynamics
- Strong if $dc = 0$

Study *compact* simply-connected torsion geometries with
- Compatible complex structures
- Small symmetry group
Outline

1. **Torsion Geometry**
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. **Superconformal Symmetry**
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2,1;\alpha)$
 - Geometric Structure

3. **T-duality**
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
KT Geometry

\[g, \nabla = \nabla^{LC} + \frac{1}{2} c, \quad c \in \Lambda^3 T^* M \]

KT Geometry

Additionally

- \(I \) integrable complex structure
- \(g(IX, IY) = g(X, Y) \)
- \(\nabla I = 0 \)

Two form \(F_I(X, Y) = g(IX, Y) \)
KT Geometry

\[g, \nabla = \nabla^{LC} + \frac{1}{2} c, \quad c \in \Lambda^3 T^* M \]

KT Geometry

Additionally
- I integrable complex structure
- $g(IX, IY) = g(X, Y)$
- $\nabla I = 0$

Two form $F_I(X, Y) = g(IX, Y)$

∇ is unique

\[c = -\text{Id} F_I \]

The Bismut connection
KT Geometry

\[g, \nabla = \nabla^{LC} + \frac{1}{2} c, \quad c \in \Lambda^3 T^* M \]

KT Geometry

- KT geometry = Hermitian geometry + Bismut connection
- \(c = 0 \) is Kähler geometry
- Strong KT is \(\partial \bar{\partial} F_I = 0 \)

Additionally:

- \(I \) integrable complex structure
- \(g(IX, IY) = g(X, Y) \)
- \(\nabla I = 0 \)

Two form \(F_I(X, Y) = g(IX, Y) \)

\(\nabla \) is unique

\[c = -IdF_I \]

The Bismut connection

\[g, \nabla = \nabla^{LC} + \frac{1}{2} c, \quad c \in \Lambda^3 T^* M \]
KT Geometry

\[g, \nabla = \nabla^{LC} + \frac{1}{2} c, \quad c \in \Lambda^3 T^* M \]

KT geometry

- I integrable complex structure
- \(g(IX, IY) = g(X, Y) \)
- \(\nabla I = 0 \)

Two form \(F_I(X, Y) = g(IX, Y) \)

\(\nabla \) is unique

\[c = -IdF_I \]

the Bismut connection

- KT geometry = Hermitian geometry + Bismut connection
- \(c = 0 \) is Kähler geometry
- strong KT is \(\partial \bar{\partial} F_I = 0 \)

Example

\[M^6 = S^3 \times S^3 = SU(2) \times SU(2) \]

Gauduchon (1991)

every compact Hermitian \(M^4 \) is conformal to strong KT
Outline

1 Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2 Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2,1;\alpha)$
 - Geometric Structure

3 T-duality
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
HKT Geometry

HKT structure

\((g, \nabla, I, J, K) \) with
- \((g, \nabla, A) \) KT, \(A = I, J, K \)
- \(IJ = K = -JI \)

\[c = -AdF_A \] is independent of \(A \)
HKT Geometry

HKT Structure

\((g, \nabla, I, J, K)\) with
- \((g, \nabla, A)\) KT, \(A = I, J, K\)
- \(IJ = K = -JI\)

\(c = -AdF_A\) is independent of \(A\)

Martín Cabrera and Swann (2007)

\[IdF_I = JdF_J = KdF_K\]

implies \(I, J, K\) integrable, so HKT.
HKT Geometry

HKT structure

\[(g, \nabla, I, J, K) \text{ with} \]

- \((g, \nabla, A) \text{ KT, } A = I, J, K\)
- \(IJ = K = -JI\)

\(c = -AdF_A\) is independent of \(A\)

Examples

Dim 4 \(T^4, K3, S^3 \times S^1\) (Boyer, 1988)

Dim 8 Hilbert schemes, \(SU(3)\), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Martín Cabrera and Swann (2007)

\[IdF_I = JdF_J = KdF_K\]

implies \(I, J, K\) integrable, so HKT.
HKT Geometry

HKT Structure

\[(g, \nabla, I, J, K) \text{ with} \]
- \[(g, \nabla, A) \text{ KT, } A = I, J, K \]
- \[IJ = K = -JI\]

\[c = -AdF_A\] is independent of \(A\)

Martín Cabrera and Swann (2007)

\[IdF_I = JdF_J = KdF_K\]

implies \(I, J, K\) integrable, so HKT.

Examples

Dim 4 \(T^4, K3, S^3 \times S^1\) (Boyer, 1988)

Dim 8 Hilbert schemes, \(SU(3)\), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperKähler nor homogeneous?
Outline

1 Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2 Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3 T-duality
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
Superconformal Quantum Mechanics

N particles in 1 dimension

$$H = \frac{1}{2} P^*_a g^{ab} P_b + V(x)$$

Standard quantisation

$$P_a \sim -i \frac{\partial}{\partial x^a}, \quad a = 1, \ldots, N$$
Superconformal Quantum Mechanics

N particles in 1 dimension

$$H = \frac{1}{2} P_a^* g^{ab} P_b + V(x)$$

Standard quantisation

$$P_a \sim -i \frac{\partial}{\partial x^a}, \quad a = 1, \ldots, N$$

Michelson and Strominger (2000); Papadopoulos (2000)

- Operator D with $[D, H] = 2iH \iff$ vector field X with $L_X g = 2g$ & $L_X V = -2V$
- K so span${iH, iD, iK} \cong \mathfrak{sl}(2, \mathbb{R}) \iff X^b = g(X, \cdot)$ is closed
- then $K = \frac{1}{2} g(X, X)$.

Choose a superalgebra containing $\mathfrak{sl}(2, \mathbb{R})$ in its even part.
Outline

1. Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2,1;\alpha)$
 - Geometric Structure

3. T-duality
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains one continuous family

$D(2, 1; \alpha)$
The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

\[D(2, 1; \alpha) \]

- \(\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1 \)
The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains one continuous family

$D(2, 1; \alpha)$

- $g = g_0 + g_1$
- $g_0 = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_+ + \mathfrak{sl}(2, \mathbb{C})_-$
- $g_1 = \mathbb{C}^2 \otimes \mathbb{C}_+^2 \otimes \mathbb{C}_-^2 = \mathbb{C}_Q^4 + \mathbb{C}_S^4$
The Superalgebras $D(2,1;\alpha)$

The classification of simple Lie superalgebras contains one continuous family

$$D(2,1;\alpha)$$

- $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$
- $\mathfrak{g}_0 = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_+ + \mathfrak{sl}(2,\mathbb{C})_-$
- $\mathfrak{g}_1 = \mathbb{C}^2 \otimes \mathbb{C}_+^2 \otimes \mathbb{C}_-^2 = \mathbb{C}_Q^4 + \mathbb{C}_S^4$
- $[S^a, Q^a] = D$
- $[S^1, Q^2] = -\frac{4\alpha}{1+\alpha} R^3_+ - \frac{4}{1+\alpha} R^3_-$
The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains one continuous family

$D(2, 1; \alpha)$

- $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$
- $\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_+ + \mathfrak{sl}(2, \mathbb{C})_-$
- $\mathfrak{g}_1 = \mathbb{C}^2 \otimes \mathbb{C}_+^2 \otimes \mathbb{C}_-^2 = \mathbb{C}_Q^4 + \mathbb{C}_S^4$
- $[S^a, Q^a] = D$
- $[S^1, Q^2] = -\frac{4\alpha}{1+\alpha} R^3_+ - \frac{4}{1+\alpha} R^3_-$

Simple for $\alpha \neq -1, 0, \infty$.

The Superalgebras $D(2,1;\alpha)$

The classification of simple Lie superalgebras contains one continuous family

$D(2,1;\alpha)$

- $g = g_0 + g_1$
- $g_0 = sl(2,\mathbb{C}) + sl(2,\mathbb{C})_+ + sl(2,\mathbb{C})_-$
- $g_1 = C^2 \otimes C^2_+ \otimes C^2_- = C^4_Q + C^4_S$
- $[S^a, Q^a] = D,$
- $[S^1, Q^2] = -\frac{4\alpha}{1+\alpha} R^3_+ - \frac{4}{1+\alpha} R^3_-$

Simple for $\alpha \neq -1, 0, \infty$.

Over \mathbb{C}, isomorphisms between the cases $\alpha^{\pm 1}, -(1 + \alpha)^{\pm 1}, -(\alpha/(1 + \alpha))^{\pm 1}$.
The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains one continuous family

$D(2, 1; \alpha)$

- $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$
- $\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_+ + \mathfrak{sl}(2, \mathbb{C})_-$
- $\mathfrak{g}_1 = \mathbb{C}^2 \otimes \mathbb{C}^2_+ \otimes \mathbb{C}^2_- = \mathbb{C}^4_Q + \mathbb{C}^4_S$
- $[S^a, Q^a] = D,$
- $[S^1, Q^2] = -\frac{4\alpha}{1+\alpha} R^3_+ - \frac{4}{1+\alpha} R^3_-$

Simple for $\alpha \neq -1, 0, \infty$.

- Over \mathbb{C}, isomorphisms between the cases $\alpha^\pm 1, -(1 + \alpha)^\pm 1$, $-(\alpha / (1 + \alpha))^\pm 1$.
- Real form
 $\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{R}) + \mathfrak{su}(2)_+ + \mathfrak{su}(2)_-$.
- Over \mathbb{R}, isomorphisms for $\alpha^\pm 1$.
Outline

1 TORSION GEOMETRY
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2 SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3 T-DUALITY
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
\[N = 4B \text{ quantum mechanics} \]

with \(D(2, 1; \alpha) \)
superconformal symmetry

\[\leftrightarrow \]

\[\text{HKT manifold } M \]

with \(X \) a special homothety of type \((a, b)\)

- \(L_X g = ag \),
- \(L_{IX} J = bK \),
- \(L_X I = 0, L_{IX} I = 0, \ldots \)
Superconformal Geometry

\(\mathcal{N} = 4B \) Quantum Mechanics

with \(D(2, 1; \alpha) \)

superconformal symmetry

\[\alpha = \frac{a}{b} - 1 \]

Action of \(\mathbb{R} \times SU(2) \)

rotating \(I, J, K \)

↔

HKT manifold \(M \)

with \(X \) a special homothety of type \((a, b) \)

- \(L_X g = ag \),
- \(L_{IX} J = bK \),
- \(L_X I = 0, L_{IX} I = 0, \ldots \)
Superconformal Geometry

N = 4B Quantum Mechanics

with $D(2, 1; \alpha)$
superconformal symmetry

- $\alpha = \frac{a}{b} - 1$
- Action of $\mathbb{R} \times SU(2)$ rotating I, J, K

HKT manifold M

with X a special homothety of type (a, b)

- $L_X g = ag$,
- $L_{IX} J = bK$,
- $L_X I = 0, L_{IX} I = 0, \ldots$

For $a \neq 0$

- M is non-compact
- $\mu = \frac{2}{a(a-b)} \|X\|^2$ is an HKT potential

$$F_I = \frac{1}{2} (dd_I + d_J d_K) \mu = \frac{1}{2} (1 - J) dId\mu.$$
Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{H}P(n) \]
\[a = 2, \ b = -2, \ \alpha = -2. \]
Supers conformal Geometry II

Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \rightarrow \mathbb{H}P(n) \]

\[a = 2, \ b = -2, \ \alpha = -2. \]

Poon and Swann (2003)

\(a \neq 0 \) corresponds to

\[Q = M / (\mathbb{R} \times SU(2)) = \mu^{-1}(1) / SU(2) \] a QKT orbifold

(of special type).
Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \rightarrow \mathbb{H}P(n) \]
\[a = 2, \, b = -2, \, \alpha = -2. \]

Poon and Swann (2003)

\[a \neq 0 \] corresponds to
\[Q = M / (\mathbb{R} \times SU(2)) = \]
\[\mu^{-1}(1) / SU(2) \] a QKT orbifold
(of special type).

E.g. \[Q = k\mathbb{C}P(2). \]
Superconformal Geometry II

Example

\[
M = \mathbb{H}^{n+1} \setminus \{0\} \rightarrow \mathbb{H}P(n)
\]

\[a = 2, \quad b = -2, \quad \alpha = -2.\]

Poon and Swann (2003)

\[a \neq 0 \text{ corresponds to } Q = M/(\mathbb{R} \times SU(2)) = \mu^{-1}(1)/SU(2) \text{ a QKT orbifold (of special type).}\]

E.g. \[Q = k\mathbb{C}P(2).\]

For \(S\) 3-Sasaki, \[M = S \times \mathbb{R}\]

warped product, is

hyperKähler with special homothety \(\alpha = -2\)
Superconformal Geometry II

Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n) \]
\[a = 2, \ b = -2, \ \alpha = -2. \]

Poon and Swann (2003)

If \(a \neq 0 \) corresponds to \(Q = M/(\mathbb{R} \times SU(2)) = \mu^{-1}(1)/SU(2) \) a QKT orbifold (of special type).

E.g. \(Q = k\mathbb{C}P(2) \).

For S 3-Sasaki, \(M = S \times \mathbb{R} \) warped product, is hyperKähler with special homothety \(\alpha = -2 \)

Get to \(a = 0 \), special isometry, by potential change

\[g_1 = \frac{1}{\mu} g - \frac{1}{2\mu^2} (d^H \mu)^2 \]
Superconformal Geometry II

Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{H}P(n) \]

\[a = 2, \quad b = -2, \quad \alpha = -2. \]

Poon and Swann (2003)

\[a \neq 0 \text{ corresponds to} \]

\[Q = M/(\mathbb{R} \times SU(2)) = \mu^{-1}(1)/SU(2) \text{ a QKT orbifold (of special type).} \]

E.g. \(Q = k\mathbb{C}P(2). \)

For S 3-Sasaki, \(M = S \times \mathbb{R} \)

warped product, is

hyperKähler with special

homothety \(\alpha = -2 \)

Get to \(a = 0 \), special isometry, by potential change

\[g_1 = \frac{1}{\mu} g - \frac{1}{2\mu^2} (d\mu^H)^2 \]

Discrete quotient

\[M = (\mu^{-1}(1) \times \mathbb{R})/\mathbb{Z}(\varphi, 2) \]

with \(g_1 \) is HKT with special isometry \(X \)
Superconformal Geometry II

Example

\[M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{H}P(n) \]
\[a = 2, \ b = -2, \ \alpha = -2. \]

Poon and Swann (2003)

\(a \neq 0 \) corresponds to
\[Q = M/(\mathbb{R} \times SU(2)) = \mu^{-1}(1)/SU(2) \] a QKT orbifold
(of special type).

E.g. \(Q = k\mathbb{CP}(2) \).

For 3-Sasaki, \(M = S \times \mathbb{R} \) warped product, is
hyperKähler with special homothety \(\alpha = -2 \)

Get to \(a = 0 \), special isometry, by potential change
\[
\mathfrak{g}_1 = \frac{1}{\mu} \mathfrak{g} - \frac{1}{2\mu^2} (d\mathbb{H}\mu)^2
\]

Discrete quotient
\[M = (\mu^{-1}(1) \times \mathbb{R})/\mathbb{Z}(\varphi, 2) \]
with \(\mathfrak{g}_1 \) is HKT with special isometry \(X \)

In this case
- \(dX^b = 0 \)
- \(b_1(M) \geq 1 \)
Outline

1. **Torsion Geometry**
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. **Superconformal Symmetry**
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3. **T-duality**
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1-bundle
T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, \gamma) \xrightarrow{\pi} M$ an invariant principal S^1-bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \lrcorner F_\theta$
T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1-bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \downarrow F\theta$

Definition

A *twist* W of M with respect to X is

$$W := P / \langle X' \rangle$$

Transverse locally free lifts always exist for $X \downarrow F\theta$ exact.
T-duality as a Twist

- X generating a circle action on M
- $(P, \theta, Y) \xrightarrow{\pi} M$ an invariant principal S^1-bundle
- $X' = \tilde{X} + aY$ a lift of X generating a free circle action, $da = -X \downarrow F_\theta$

Dually

M is a twist of W with respect to $X_W = (\pi_W)_* Y, \theta_W = \frac{1}{a} \theta$

Definition

A *twist* W of M with respect to X is

$$W := P/\langle X' \rangle$$

Transverse locally free lifts always exist for $X \downarrow F_\theta$ exact.
T-duality as a Twist

- X generating a circle action on M
- \((P, \theta, \gamma) \xrightarrow{\pi} M\) an invariant principal \(S^1\)-bundle
- \(X' = \tilde{X} + aY\) a lift of X generating a free circle action, \(da = -X \downarrow F_\theta\)

Definition

A *twist* \(W\) of \(M\) with respect to \(X\) is

\[W := P / \langle X' \rangle \]

Transverse locally free lifts always exist for \(X \downarrow F_\theta\) exact.

Dually

\(M\) is a twist of \(W\) with respect to \(X_W = (\pi_W)_* \gamma, \theta_W = \frac{1}{a} \theta\)

Definition

Tensors \(\alpha\) on \(\alpha_W\) on \(M\) and \(W\) are \(\mathcal{H}\)-related, \(\alpha_W \sim_{\mathcal{H}} \alpha\) if their pull-backs agree on \(\mathcal{H} = \ker \theta\)

\[
d\alpha_W \sim_{\mathcal{H}} d\alpha - F_\theta \wedge \frac{1}{a} X \downarrow \alpha
\]

if invariant
Outline

1. **Torsion Geometry**
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2. **Superconformal Symmetry**
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3. **T-duality**
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
Twisting HKT

Twist by

\[g_W \sim_{\mathcal{H}} g, \quad F^W_I \sim_{\mathcal{H}} F_I, \text{etc.} \]
Twisting HKT

Twist by

$$g_w \sim_{\mathcal{H}} g, \quad F^W_I \sim_{\mathcal{H}} F_I, \text{etc.}$$

Then

$$\text{Id} F^W_I \sim_{\mathcal{H}} \text{Id} F_I + \frac{1}{a} X^b \wedge IF_\theta$$

For HKT need

$$c = -\text{Id} F_I = -JdF_I = -KdF_K$$
Twisting HKT

Twist by

$$g_W \sim_H g, \quad F^W_I \sim_H F_I, \text{ etc.}$$

Then

$$IdF^W_I \sim_H IdF_I + \frac{1}{a} X^b \wedge IF_\theta$$

For HKT need

$$c = -IdF_I = -JdF_I = -KdF_K$$

Proposition

HKT twists to HKT via a circle if and only if \(F_\theta \in S^2E = \bigcap_I \Lambda_I^{1,1} \), i.e., an instanton
Twisting HKT

Twist by

\[g_W \sim_H g, \quad F^W_I \sim_H F_I, \text{ etc.} \]

Then

\[IdF^W_I \sim_H IdF_I + \frac{1}{a} X^b \wedge IF_\theta \]

For HKT need

\[c = -IdF_I = -JdF_I = -KdF_K \]

Proposition

HKT twists to HKT via a circle if and only if \(F_\theta \in S^2 E = \bigcap I \Lambda^{1,1}_I \), i.e., an instanton

\[X \text{ a special isometry, } X \perp F_\theta = 0 \text{ twists to } X_W \text{ a special isometry} \]
Twisting HKT

Twist by
\[g_W \sim_H g, \quad F^W_I \sim_H F_I, \text{etc.} \]

Then
\[\text{Id} F^W_I \sim_H \text{Id} F_I + \frac{1}{a} X^b \wedge IF_\theta \]

For HKT need
\[c = -\text{Id} F_I = -JdF_I = -KdF_K \]

Proposition

HKT twists to HKT via a circle if and only if \(F_\theta \in S^2 E = \bigcap I \Lambda^1_1 \), i.e., an instanton

X a special isometry, \(X \perp F_\theta = 0 \) twists to \(X_W \) a special isometry

Theorem

M HKT with special isometry \((\alpha = -1)\). Can
- untwist locally to \(dX^b = 0 \) on \(S \times S^1 \)
- change potential on \(S \times \mathbb{R} \) to \(a \neq 0, (\alpha = -2) \)
Twisting HKT

Twist by

\[g_W \sim_{\mathcal{H}} g, \quad F_I^W \sim_{\mathcal{H}} F_I, \text{etc.} \]

Then

\[IdF_I^W \sim_{\mathcal{H}} IdF_I + \frac{1}{a} X^b \wedge IF_\theta \]

For HKT need

\[c = -IdF_I = -JdF_I = -KdF_K \]

Proposition

HKT twists to HKT via a circle if and only if \(F_\theta \in S^2E = \cap I \Lambda_I^{1,1}, \) i.e., an instanton

\[X \text{ a special isometry, } X \perp F_\theta = 0 \]

\[\text{twists to } X_W \text{ a special isometry} \]

Theorem

\(M \text{ HKT with special isometry} \)

(\(\alpha = -1 \)). Can

- untwist locally to \(dX^b = 0 \) on \(S \times S^1 \)
- change potential on \(S \times \mathbb{R} \) to \(a \neq 0, (\alpha = -2) \)

\[F_\theta = dX^b \text{ is an instanton} \]
Twisting HKT

Twist by

\[g_W \sim_H g, \quad F_I^W \sim_H F_I, \text{ etc.} \]

Then

\[\text{Id} F_I^W \sim_H \text{Id} F_I + \frac{1}{a} X^b \wedge I F_\theta \]

For HKT need

\[c = -\text{Id} F_I = -J d F_I = -K d F_K \]

Proposition

HKT twists to HKT via a circle if and only if \(F_\theta \in S^2 E = \bigcap I \Lambda_1^{1,1} \), i.e., an instanton

\[X \text{ a special isometry, } X \perp F_\theta = 0 \]

Twists to \(X_W \) a special isometry

Theorem

\(M \) HKT with special isometry \((\alpha = -1) \). Can

- untwist locally to \(d X^b = 0 \)
 on \(S \times S^1 \)
- change potential on \(S \times \mathbb{R} \) to \(a \neq 0, (\alpha = -2) \)

\[F_\theta = d X^b \text{ is an instanton} \]

Many simply-connected examples when \(b_2(S) \geq 1 \)
E.g., \(Q = k \mathbb{C}P(2) \)
Outline

1 Torsion Geometry
 - Metric geometry with torsion
 - KT Geometry
 - HKT Geometry

2 Superconformal Symmetry
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure

3 T-duality
 - T-duality as a Twist Construction
 - HKT Examples
 - General HKT with Circle Symmetry
General HKT with Circle Symmetry

- \(M = N_1 \times N_2 \)
- \(N_2 \) with an HKT circle symmetry \(X \)
- \([F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E\)
General HKT with Circle Symmetry

- $M = N_1 \times N_2$
- N_2 with an HKT circle symmetry X
- $[F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry
General HKT with Circle Symmetry

- $M = N_1 \times N_2$
- N_2 with an HKT circle symmetry X
- $[F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

N_1 a K3 surface
F_θ self-dual, primitive

Generalises to torus actions
General HKT with Circle Symmetry

- $M = N_1 \times N_2$
- N_2 with an HKT circle symmetry X
- $[F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

N_1 a K3 surface
F_θ self-dual, primitive

Generalises to torus actions
General HKT with Circle Symmetry

- \(M = N_1 \times N_2 \)
- \(N_2 \) with an HKT circle symmetry \(X \)
- \([F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2 E\)

Twists to \(N_2 \to W \to N_1 \) HKT with circle symmetry

Generate simply-connected examples

Example

- \(N_1 \) a K3 surface
- \(F_\theta \) self-dual, primitive

HKT nilmanifold \(M = G/\Gamma \)

\(g^* \) basis \(e_1, \ldots, e_n \) with

\[de_{i+1} \in \Lambda^2 \text{span}\{e_1, \ldots, e_i\} \]

Generalises to torus actions
General HKT with Circle Symmetry

- \(M = N_1 \times N_2 \)
- \(N_2 \) with an HKT circle symmetry \(X \)
- \([F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E\)

Twists to \(N_2 \rightarrow W \rightarrow N_1 \) HKT with circle symmetry

Generate simply-connected examples

Example

\(N_1 \) a K3 surface
\(F_\theta \) self-dual, primitive

HKT nilmanifold \(M = G/\Gamma \)
\(\mathfrak{g}^* \) basis \(e_1, \ldots, e_n \) with

\[de_{i+1} \in \Lambda^2 \text{span}\{e_1, \ldots, e_i\} \]

Barberis, Dotti Miatello, and Verbitsky (2007)

\(I, J, K \) are Abelian

\[de_{i+1} \in S^2E \cap \Lambda^2 \text{span}\{e_1, \ldots, e_i\} \]

Generalises to torus actions
General HKT with Circle Symmetry

- $M = N_1 \times N_2$
- N_2 with an HKT circle symmetry X
- $[F_\theta] \in H^2(N_1, \mathbb{Z}), F_\theta \in S^2E$

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with circle symmetry

Generate simply-connected examples

Example

N_1 a K3 surface
F_θ self-dual, primitive

Generalises to torus actions

HKT nilmanifold $M = G/\Gamma$
\mathfrak{g}^* basis e_1, \ldots, e_n with

$$de_{i+1} \in \Lambda^2 \text{span}\{e_1, \ldots, e_i\}$$

Proposition

Every HKT nilmanifold may be obtained by successive twists of a torus T^{4n}.

Barberis, Dotti Miatello, and Verbitsky (2007)

I, J, K are Abelian

$$de_{i+1} \in S^2E \cap \Lambda^2 \text{span}\{e_1, \ldots, e_i\}$$
Summary

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
Summary

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
Summary

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- $\alpha = -1$ comes from previous examples via change of potential and twist
Summary

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- $\alpha = -1$ comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with $\alpha = -1$
Summary

- $D(2,1;\alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- $\alpha = -1$ comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with $\alpha = -1$
- construct other compact HKT manifolds by further twists
Summary

- $D(2,1;\alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- $\alpha = -1$ comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with $\alpha = -1$
- construct other compact HKT manifolds by further twists
- non-instanton twists by tori

\[\sum_{i,j} (a^{-1})_{ij} X_i \wedge IF_j \] independent of I

gives further non-compact HKT examples

