A SHEAR CONSTRUCTION, SOLVABLE LIE ALGEBRAS AND SKT GEOMETRY

Andrew Swann

Department of Mathematics & DIGIT Aarhus University swann@math.au.dk

12th Minimeeting on Differential Geometry CIMAT, December 2020

Freibert, M. and Swann, A. F. (2019), 'Solvable groups and a shear construction', J. Geom. Phys. 106: 268–74 Freibert, M. and Swann, A. F. (2019), 'The shear construction', Geom. Dedicata, 198 (1): 71–101. Freibert, M. and Swann, A. F. (2020), Two-step solvable SKT shears, 9 Nov., arXiv: 2011.04331 [math.DG]

 SOLVABLE ALGEBRAS Two-step solvable algebras SKT algebras

Section 1

SKT GEOMETRY

SKT GEOMETRY

 $(g, J, \sigma = g(J \cdot, \cdot))$ a Hermitian structure (*J* integrable) Strong Kähler with torsion (SKT):

$$dJd\sigma = 0$$

Equivalently $\partial \overline{\partial} \sigma = 0$.

Originates from supersymmetric σ -models (Gates et al. 1984) / superstrings with torsion (Strominger 1986).

TORSION: the Bismut connection $\nabla^B = \nabla^{LC} + \frac{1}{2}T^B$ has torsion T^B given by

$$g(T^B(X,Y),Z) = d\sigma(JX,JY,JZ) \eqqcolon c^B(X,Y,Z)$$

a three-form. Gauduchon (1997): ∇^B is the unique Hermitian connection with torsion a three-form. STRONG: the torsion three-form c^B is closed.

FIRST EXAMPLES

SKT: (q, J, σ) Hermitian with $dJd\sigma = 0$

KÄHLER MANIFOLDS: are all SKT.

REAL DIMENSION 4: SKT same as the Lee form $Id^*\sigma$ is co-closed. For compact M, Gauduchon (1984) gives a unique SKT metric in each conformal class. E.g. $M = S^1 \times S^3$

COMPACT LIE GROUPS OF EVEN DIMENSION: J any left-invariant complex structure, g any compatible bi-invariant metric, $\nabla_{V}^{LC}Y = \frac{1}{2}[X, Y], c^{B} = -g([X, Y], Z)$ is SKT (Spindel et al. 1988). E.g. M = SU(3) or $SU(2) \times SU(2)$

SOME PREVIOUS HOMOGENEOUS CLASSIFICATIONS

Notation: (0, 12) indicates the affine algebra given dually by $de^1 = 0$, $de^2 = e^1 \wedge e^2 =: e^{12}$, etc.

Non-Kähler examples

NILPOTENT LIE GROUPS

Dimension 4: (0, 0, 0, 12)

Dimension 6: Fino et al. (2004) (out of 34 algebras)

(0, 0, 0, 0, 0, 12), (0, 0, 0, 0, 12, 34),(0, 0, 0, 0, 12, 13 + 42), (0, 0, 0, 0, 12 + 34, 13 + 42).

Dimension 8: Enrietti et al. (2012)

SOLVABLE LIE GROUPS

Dimension 4: Madsen and Swann (2011) Almost Abelian algebras: characterised by Arroyo and Lafuente (2019)

Section 2

TWISTS AND SHEARS

THE TWIST CONSTRUCTION

M a manifold with an action of a connected Abelian group A_M , e.g. $A_M = T^k$, infinitesimal action $\xi : \mathfrak{a}_M \to \mathfrak{X}(M)$. *P* a principal $A_P = T^k$ -bundle over *M*, infinitesimal action $\rho : \mathfrak{a}_P \to \mathfrak{X}(P)$. Connection one-form $\theta \in \Omega^1(P, \mathfrak{a}_P)$, curvature $\pi_M^* \omega = d\theta$, and horizontal distribution $\mathcal{H} = \ker \theta$. Horizontal lift $\tilde{\xi}$ of ξ . The action $\hat{\xi} = \tilde{\xi} + (\pi^* a)\rho$, $a \in \Omega^0(M, \mathfrak{a}_P \otimes \mathfrak{a}_M^*)$, commutes with A_P if and only if $\xi \lrcorner \omega = -da$ and $\xi^* \omega = 0$. We then put $W = P/\langle \hat{\xi} \rangle$ to be the *twist* of *M*. A_P then induces an action on *W*, and *M* is also a twist of *W*.

$\mathcal H ext{-}\operatorname{Related}$ forms

Invariant *p*-forms α_M on *M* and α_W on *W* are *H*-*related*, written $\alpha_M \sim_{\mathcal{H}} \alpha_W$, if

$$\pi_M^* \alpha_M \Big|_{\Lambda^p \mathcal{H}} = \pi_W^* \alpha_W \Big|_{\Lambda^p \mathcal{H}}.$$

EXTERIOR DERIVATIVES are then related by

$$d\alpha_W \sim_{\mathcal{H}} d\alpha_M - a^{-1}\omega \wedge (\xi \,\lrcorner\, \alpha_M)$$

 ω curvature of $P \to M$, ξ the infinitesimal action on M, $a \in \Omega^0(M, \mathfrak{a}_p \otimes \mathfrak{a}_M^*), da = -\xi \lrcorner \omega$. Similarly, for other tensors.

SKT TWISTS

If *M* is SKT, can now compute when the twist is SKT.

Typical examples obtained from $M = N \times T^{2k}$, *N* SKT or Kähler, $\omega = \sum_{i=1}^{2k} \omega_i \otimes e_i, \omega_i \in \Omega^{1,1}(N)$ (*instanton case*) integral with $\sum_{i,j=1}^{2k} \gamma_{ij}\omega_i \wedge \omega_j = 0$ for $(\gamma_{ij}) \in M_{2k}(\mathbb{R})$ invertible. There is also a non-instanton case, with more involved conditions on the $\omega_i \in \Omega^2(N)$.

Get non-trivial SKT structures on various torus bundles over Kähler manifolds, some examples where the manifold admits no Kähler structure: includes compact Lie groups as torus bundles over flag manifolds, Grantcharov et al. (2008) examples $(k-1)(S^2 \times S^4) #k(S^3 \times S^3)$ for all $k \ge 1$ and each nilmanifold example in dimension 6.

TWO-STEP NILPOTENT TWISTS

 $G = T^n, \mathfrak{g} = \mathbb{R}^n$

a a *k*-dimensional subalgebra, $\xi : \mathfrak{a} \to \mathfrak{g}$ inclusion.

Take $\omega \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{a}$ closed with $\xi \sqcup \omega = 0$.

Then for $a = id_a$, the twist is two-step nilpotent with non-trivial derivatives given by $-\omega$.

EXAMPLE $\mathfrak{g} = \mathbb{R}^3$, $\mathfrak{a} = \text{Span}\{E_3\}$, $\omega = -e^1 \wedge e^2 \otimes E_3$ has twist $(0, 0, e^{12})$, the Heisenberg group.

EXAMPLE $\mathfrak{g} = \mathbb{R}^6$, $\mathfrak{a} = \text{Span}\{E_5, E_6\}$, $\omega = -e^1 \wedge e^2 \otimes E_5 - (e^1 \wedge e^3 + e^4 \wedge e^2) \otimes E_6$ has twist (0, 0, 0, 0, 12, 13 + 42), an SKT algebra.

SHEAR DATA

A foliated version of the twist construction. $\pi_E: E \to M$ a bundle with flat connection ∇ and a bundle morphism $\xi: E \to TM$ that is *torsion free*

$$\xi(\nabla_{\xi e_1} e_2 - \nabla_{\xi e_2} e_1) = [\xi e_1, \xi e_2].$$

 $\pi_F \colon F \to M$ a second flat bundle connection ∇ , a bundle isomorphism $a \colon E \to F$ and a two-form $\omega \in \Omega^2(M, F)$ with

$$d^{\nabla}\omega = 0, \quad \xi \lrcorner \omega = -d^{\nabla}a \quad \text{and} \quad \xi^*\omega = 0.$$

A *shear total space* for ω is a foliated manifold *P*, with leaf space $\pi: P \to M$, such that $\mathcal{V} = \ker d\pi$ is isomorphic to π^*F , and there a "connection" $\theta \in \Omega^1(P, \pi^*F)$ realising $\mathcal{V} \cong \pi^*F$, and with $d^{\nabla}\theta = \pi^*\omega$. Again $\mathcal{H} = \ker \theta$ is a horizontal subbundle.

THE SHEAR CONSTRUCTION

Shear data ensures that the bundle morphism $\xi : \pi^* E \to TP$ given by

$$\mathring{\xi} = \widetilde{\xi} + \rho \circ \pi^* a,$$

where $\tilde{\xi}: \pi^*E \to \mathcal{H} \subset TP$ is the horizontal lift, is such that $\mathring{\xi}(\pi^*E)$ is an integrable distribution on *P*. The *shear* of (M, ξ, a, ω) is then

$$S = P/\mathring{\xi}(\pi^* E).$$

One can work with $\mathcal H\text{-}\mathrm{related}$ forms satisfying the invariance condition

$$\mathcal{L}^{\nabla}_{\xi} \alpha \coloneqq \xi \,\lrcorner\, d\alpha + d^{\nabla}(\xi \,\lrcorner\, \alpha) = 0.$$

The previous formula for the exterior derivative then holds.

Section 3

SOLVABLE ALGEBRAS

SHEARS OF ABELIAN ALGEBRAS

 \mathfrak{g} any Lie algebra, \mathfrak{a}_P Abelian. Any extension

$$\mathfrak{a}_P \hookrightarrow \mathfrak{p} \to \mathfrak{g}$$

has

$$[X,Y]_{\mathfrak{p}} = [X,Y]_{\mathfrak{g}} - \omega(X,Y) \text{ and } [X,Z]_{\mathfrak{p}} = \eta(X)Z$$

for $X, Y \in \mathfrak{g}, Z \in \mathfrak{a}_P$. Thus it is specified by

$$\omega \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{a}_P$$
 and $\eta \in \mathfrak{g}^* \otimes \mathfrak{gl}(\mathfrak{a}_P)$.

The Jacobi identity is

$$d\omega = -\eta \wedge \omega.$$

Regarding η as a connection one-form for ∇ , this equation is $d^{\nabla}\omega = 0$.

TWO-STEP SOLVABLE ALGEBRAS

g Abelian. Can take $\xi = \text{inc}: \mathfrak{a} = \mathfrak{a}_G \to \mathfrak{g}$ inclusion, $\mathfrak{a}_P = \mathfrak{a}$ and $a = \text{id}_\mathfrak{a}: \mathfrak{a}_G \to \mathfrak{a}_P$. Then ω determines the rest of the shear data. Writing $\mathfrak{g} = \mathfrak{a} \oplus U$,

$$\omega \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{a}$$
$$\omega_{-1} + \omega_0 + \omega_1 \in \left(\Lambda^2 \mathfrak{a}^* \oplus (U^* \wedge \mathfrak{a}^*) \oplus \Lambda^2 U^*\right) \otimes \mathfrak{a}.$$

PROPOSITION

This is shear data if and only if $\omega_{-1} = 0$ and

```
\mathcal{A}(\omega(\omega(\,\cdot\,,\,\cdot\,),\,\cdot\,))=0
```

where *A* is skew-symmetrisation.

(Corresponds to $\eta = -\omega_0$ and connection form for *E* being 0). The shear algebra \mathfrak{h} , which is \mathfrak{p} quotiented by the diagonal copy of \mathfrak{a} , has Lie brackets given by $-\omega$. It is two-step solvable.

DATA FOR TWO-STEP SOLVABLE SKT ALGEBRAS

g Abelian, even-dimensional, with flat Kähler structure (g, J, σ) . If (\mathfrak{a}, ω) is two-step shear data on g, then the shear \mathfrak{h} is SKT if and only if

$$\omega(J \cdot, J \cdot) = \omega(\cdot, \cdot) + J(\omega(J \cdot, \cdot) + \omega(\cdot, J \cdot)) \quad \text{and} \\ \mathcal{R}(g(\omega(J \cdot, J \cdot), \omega(\cdot, \cdot)) + 2g(\omega(J\omega(\cdot, \cdot), J \cdot), \cdot)) = 0$$

Put

$$\mathfrak{a}_J = \mathfrak{a} \cap J\mathfrak{a}, \quad \mathfrak{a}_r = \mathfrak{a}_J^{\perp} \cap \mathfrak{a},$$

 $U_r = J\mathfrak{a}_r, \quad U_J = (\mathfrak{a} \oplus J\mathfrak{a}_r)^{\perp}, \quad U = U_r \oplus U_J$

and split $\omega = \omega_0 + \omega_1 \in (U^* \wedge \mathfrak{a}^* \oplus \Lambda^2 U^*) \otimes \mathfrak{a}$ accordingly.

SIMULTANEOUS DIAGONALISATION

For $X \in \mathfrak{a}_r$, put $A_X = -\omega_0(JX, \cdot) \in \operatorname{End}(\mathfrak{a})$ and K_X the part of A_X in $\operatorname{End}(\mathfrak{a}_J)$.

PROPOSITION

There is a unitary basis Y_i of \mathfrak{a}_J and $\alpha_j \in \mathfrak{a}_r^* \otimes \mathbb{C}$ such that

 $K_X(Y_i) = \alpha_i(X)Y_i, \quad for all X \in \mathfrak{a}_r.$

CLASSIFICATION RESULTS

Write $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ for the derived algebra.

THEOREM

There are explicit classifications for two-step solvable SKT Lie algebras g in the following cases:

g almost Abelian, i.e. g has a codimension one Abelian ideal,

 $\operatorname{codim} \mathfrak{g}' = 2 \operatorname{with} J \mathfrak{g}' \neq \mathfrak{g}',$

 \mathfrak{g}' totally real, i.e. $J\mathfrak{g}' \cap \mathfrak{g}' = \{0\}$, with $\operatorname{codim}_{\mathfrak{g}'}[\mathfrak{g}', J\mathfrak{g}'] \leq 2$,

and

dim $\mathfrak{g}' \leq 2$.

Specialising and extending one also obtains a classification of all two-step solvable SKT Lie algebras in dimension 6, with the exception of the case when dim g' = 4 with Jg' = g'.

REFERENCES

REFERENCES I

- Arroyo, R. M. and Lafuente, R. A. (2019), 'The long-time behaviour of the homogeneous pluriclosed flow', *Proc. London Math. Soc.* (3), 119: 266–89.
- Enrietti, N., Fino, A., and Vezzoni, L. (2012), 'Tamed symplectic forms and strong Kähler with torsion metrics', *J. Symplectic Geom.* 10 (2): 203–23.
- Fino, A., Parton, M., and Salamon, S. M. (2004), 'Families of strong KT structures in six dimensions', *Comment. Math. Helv.* 79 (2): 317–40.
- Freibert, M. and Swann, A. F. (2016), 'Solvable groups and a shear construction', *J. Geom. Phys.* 106: 268–74.
- Freibert, M. and Swann, A. F. (2019), 'The shear construction', *Geom. Dedicata*, 198 (1): 71–101.
- Freibert, M. and Swann, A. F. (2020), *Two-step solvable SKT shears*, 9 Nov., arXiv: 2011.04331 [math.DG].
- Gates Jr., S. J., Hull, C. M., and Roček, M. (1984), 'Twisted multiplets and new supersymmetric non-linear σ -models', *Nucl. Phys. B* 248: 157–86.

REFERENCES

REFERENCES II

Gauduchon, P. (1984), 'La 1-forme de torsion d'une variété hermitienne compacte', *Math. Ann.* 267: 495–518.

Gauduchon, P. (1997), 'Hermitian connections and Dirac operators', *Boll. Un. Mat. Ital. B* (7), 11 (2, suppl.): 257–88.

- Grantcharov, D., Grantcharov, G., and Poon, Y. S. (2008), 'Calabi-Yau connections with torsion on toric bundles', *J. Differential Geom.* 78 (1): 13–32.
- Madsen, T. B. and Swann, A. F. (2011), 'Invariant strong KT geometry on four-dimensional solvable Lie groups', *J. Lie Theory*, 21 (1): 55–70.

Spindel, P. et al. (1988), 'Extended supersymmetric *σ*-models on group manifolds. I. The complex structures', *Nuclear Phys. B* 308 (2-3): 662–98.

Strominger, A. (1986), 'Superstrings with torsion', Nuclear Phys. B 274 (2): 253-84.