NEARLY KÄHLER MANIFOLDS WITH TORUS SYMMETRY

Andrew Swann
Department of Mathematics \& DIGIT, Aarhus University

Montréal, 12th October, 2021

Joint work with Giovanni Russo

Russo, G. and Swann, A. F. (2019), 'Nearly Kähler six-manifolds with two-torus symmetry', J. Geom. Phys. 138: 144-53 Russo, G. (2021), 'Multi-moment maps on nearly Kähler six-manifolds', Geom. Dedicata, 213: 57-81

1 BACKGROUND

2 MULTI-MOMENT MAPS

3 REGULAR REDUCTION

4 CRITICAL SETS

NEARLY KÄHLER GEOMETRY

A (strict) nearly Kähler manifold is an almost Hermitian manifold (M, g, J) such that

$$
\left(\nabla_{X} J\right) X=0 \quad \text { and } \quad \nabla J \neq 0
$$

Introduced and extensively studied by Gray (1965) and subsequent papers.
Nagy (2002): complete, simply-connected nearly Kähler manifolds are products of

■ Kähler manifolds,

- three-symmetric spaces,

■ twistor spaces of positive quaternionic Kähler manifolds, and/or
■ nearly Kähler six-manifolds.

DIMENSION 6

Nearly Kähler in dimension 6
■ are positive Einstein (Gray 1976), so complete examples are compact with π_{1} finite
■ homogeneous examples are three-symmetric spaces:

$$
\begin{gathered}
S^{6}=\frac{\mathrm{G}_{2}}{\mathrm{SU}(3)}, \quad \mathbb{C P}(3)=\frac{\mathrm{Sp}(2)}{\operatorname{Sp}(1) \mathrm{U}(1)}, \\
F_{1,2}\left(\mathbb{C}^{3}\right)=\frac{\mathrm{SU}(3)}{T^{2}}, \quad S^{3} \times S^{3}=\frac{\mathrm{SU}(2)^{3}}{\mathrm{SU}(2)_{\Delta}}
\end{gathered}
$$

constructed by Wolf and Gray (1968), classified by Butruille (2005)
\square admit Killing spinors and their cones are of holonomy G_{2}

- Foscolo and Haskins (2017) new compact examples: cohomogeneity one on $S^{3} \times S^{3}$ and S^{6}, with principal orbit
$(\mathrm{SU}(2) \times \mathrm{SU}(2)) / \mathrm{U}(1)_{\Delta}=S^{2} \times S^{3}$

SYMMETRY RANK

Connected automorphism groups G

Space	S^{6}	$\mathbb{C P}(3)$	$F_{1,2}\left(\mathbb{C}^{3}\right)$	$S^{3} \times S^{3}$
3-symmetric	G_{2}	$\mathrm{Sp}(2)$	$\mathrm{SU}(3)$	$\mathrm{SU}(2)^{3}$
Cohom. 1	$\mathrm{SU}(2)^{2}$			$\mathrm{SU}(2)^{2}$

ObSERVE $\operatorname{rank} G \geqslant 2$ with rank $G>2$ only for the three-symmetric structure on $S^{3} \times S^{3}$

Moroianu and Nagy (2019) For six-dimensional nearly Kähler manifolds, the connected automorphism group G satisfies rank $G \leqslant 3$

AIM study nearly Kähler six-manifolds with an effective action of T^{2}

DIFFERENTIAL FORMS

$\left(M^{6}, g, J\right)$ nearly Kähler with 2-form $\sigma=g(J \cdot, \cdot)$.
Put

$$
\psi_{+}=\frac{1}{3} d \sigma \quad \text { and } \quad \psi_{-}=\psi_{+}(J \cdot, J \cdot, J \cdot) .
$$

$\psi_{+}+i \psi_{-} \in \Lambda^{3,0}$ and is of constant length. The structure group reduces to $\mathrm{SU}(3)$.
Can rescale g, so

$$
d \psi_{-}=-2 \sigma \wedge \sigma
$$

These forms are preserved by the symmetries of (M, g, J).

$$
d \sigma=3 \psi_{+}
$$

is closed, and exact, with invariant primitive.
g is determined by σ and ψ_{+}via

$$
\left.\left.g(X, Y) \sigma^{3}=3(X\lrcorner \psi_{+}\right) \wedge(Y\lrcorner \psi_{+}\right) \wedge \sigma
$$

ABELIAN MULTI-MOMENT MAPS

If T^{k} acts on preserving a form $\alpha \in \Omega^{r}(M)$, then

$$
\begin{gathered}
\nu: M \rightarrow \Lambda^{r} \operatorname{Lie}\left(T^{k}\right)^{*} \\
\nu\left(X_{1} \wedge \cdots \wedge X_{r}\right)=\alpha\left(X_{1}, \ldots, X_{r}\right)
\end{gathered}
$$

is a multi-moment map for the action.
This generalises the idea of Abelian moment map when $d \alpha=\omega$ is a symplectic form, since

$$
d\left(\nu\left(X_{1} \wedge \cdots \wedge X_{r}\right)\right)(\cdot)=(d \alpha)\left(X_{1}, \ldots, X_{r}, \cdot\right)
$$

For $\left(M^{6}, g, J\right)$ nearly Kähler with T^{2}-symmetry generated by U, V, we call

$$
\nu: M \rightarrow \mathbb{R}=\Lambda^{2} \operatorname{Lie}\left(T^{2}\right)^{*} \quad \nu=\sigma(U, V)
$$

the multi-moment map.

FIRST PROPERTIES

$$
\nu: M \rightarrow \mathbb{R} \quad \nu=\sigma(U, V)
$$

Satisfies

$$
\Delta \nu=24 \nu
$$

and

$$
d \nu=3 \psi_{+}(U, V, \cdot)
$$

PROPOSITION

For $\left(M^{6}, g, J\right)$ complete and connected, $\nu(M)=[a, b]$ is a compact interval containing 0 in its interior.

In particular, ν has regular values in $[a, b]$.

REDUCTION AT REGULAR VALUES

$s \neq 0$ a regular value of $v=\sigma(U, V)$.
Connection one-forms $\vartheta_{1}, \vartheta_{2}$ dual to U, V and zero on $\operatorname{Span}\{U, V\}^{\perp}$. Get three one-forms

$$
\left.\left.\alpha_{0}=\psi_{-}(U, V, \cdot), \quad \alpha_{1}=s \vartheta_{1}+V\right\lrcorner \sigma, \quad \alpha_{2}=s \vartheta_{2}-U\right\lrcorner \sigma
$$

that descend to $Q=\nu^{-1}(s) / T^{2}$.
Nearly Kähler metric

$$
g=\frac{1}{9\left(h^{2}-s^{2}\right)} d s^{2}+\vartheta^{T} H \vartheta+\frac{1}{h^{2}-s^{2}}\left(\alpha_{0}^{2}+\alpha^{T} H \alpha\right)
$$

for $\vartheta=\binom{\vartheta_{1}}{\vartheta_{2}}, \alpha=\binom{\alpha_{1}}{\alpha_{2}}, H=\left(\begin{array}{ll}g(U, U) & g(U, V) \\ g(U, V) & g(V, V)\end{array}\right)$ and $h^{2}=\operatorname{det} H$.

RECONSTRUCTION

THEOREM

One-forms $\alpha_{0}, \alpha_{1}, \alpha_{2}$ on Q^{3} satisfying

$$
d \alpha_{0}=f \alpha_{1} \wedge \alpha_{2}, \quad d\left(f \alpha_{1}\right) \wedge \alpha_{0}=0=d\left(f \alpha_{2}\right) \wedge \alpha_{0}
$$

together with a choice of metric H on $\operatorname{Span}\left\{\alpha_{1}, \alpha_{2}\right\}$ determine a nearly Kähler manifold with T^{2}-symmetry via a geometric flow.

If Q is homogeneous with invariant data, then Q is any non-Abelian unimodular group. The flow is

$$
\begin{gathered}
\alpha_{0}^{\prime}=\frac{4 s}{3\left(h^{2}-s^{2}\right)} \alpha_{0}, \quad \alpha^{\prime}=\frac{s}{3}\left(\frac{8}{h^{2}-s^{2}} 1_{2}-\frac{1}{h^{2}} P H\right) \alpha, \\
H^{\prime}=-\frac{1}{s} H+\frac{h^{2}-s^{2}}{3 s h^{2}} H P H, \quad \text { where } d \alpha=\alpha_{0} \wedge P\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \alpha .
\end{gathered}
$$

Can be diagonalised.

EXAMPLE

$Q=\operatorname{SO}(3) \quad \mathfrak{S v}(3)^{*}=(23,31,12)$.
Particular solution. For

$$
s=-\frac{2}{3 \sqrt{3}} \cos (2 t) \quad \text { with } t \in(0, \pi / 2)
$$

have

$$
\begin{gathered}
\alpha_{0}=\frac{4}{27} \sin (2 t) e_{1}, \\
\alpha_{1}+\alpha_{2}=-\frac{4}{3 \sqrt{3}} \frac{\sin (t) \sin (2 t)}{2-\cos (2 t)} e_{2}, \\
\alpha_{1}-\alpha_{2}=-\frac{4}{3 \sqrt{3}} \frac{\cos (t) \sin (2 t)}{2+\cos (2 t)} e_{3} .
\end{gathered}
$$

Gives cohomogeneity-one action of $T^{2} \times \mathrm{SU}(2)$ on $S^{3} \times S^{3}$.
Action is missing from Podestà and Spiro (2010). Should be in the cohomogeneity two results of Madnick (2020).

StABILISERS

(M^{6}, g, J) nearly Kähler with T^{2}-symmetry, $v=\sigma(U, V)$. Recall $\nu(M)=[a, b]$ with $0 \in(a, b)$.
Stabilisers are either:

- T^{2},
- circle subgroups, or

■ finite cyclic subgroups.
The first two only occur in $\nu^{-1}(0)$, the last can only occur outside $\nu^{-1}(0)$. $\nu^{-1}(0) / T^{2}$ is a topological 3-manifold containing a trivalent graph with

■ points corresponding to stabiliser T^{2} and
■ edges corresponding to stabiliser a circle.

KNOWN GRAPHS FOR T^{2}-ACTIONS

In $\nu^{-1}(0) / T^{2}$

$$
\begin{gathered}
S^{3} \times S^{3} \\
\varnothing, \\
\bigcirc, \text { or } \\
\bigcirc
\end{gathered}
$$

CRITICAL SETS AT NON-ZERO ν

Occur if and only if U, V linearly dependent over \mathbb{C} but not over \mathbb{R}. Same condition for points with finite stabiliser.

For three-symmetric $S^{6}, \mathbb{C P}(3)$ and $F_{1,2}\left(\mathbb{C}^{3}\right)$ only two such sets, from maximum and minimum of ν. Both are pseudo-holomorphic tori, and $\min \nu=-\max \nu$.

For $S^{3} \times S^{3}=\mathrm{SU}(2)^{3} / \mathrm{SU}(2)_{\Delta}$ different T^{2} have different behaviours; can have $\min \nu \neq-\max \nu$, saddle points or 4-dimensional critical sets.

At critical points the Hessian of ν satisfies

$$
\operatorname{Hess}(X, Y)+\operatorname{Hess}(J X, J Y)+12 \nu g^{\perp}(X, Y)=0
$$

REFERENCES I

Butruille, J.-B. (2005), 'Classification des variétés approximativement kähleriennes homogènes', Ann. Global Anal. Geom. 27 (3): 201-25.

Foscolo, L. and Haskins, M. (2017), 'New G_{2}-holonomy cones and exotic nearly Kähler structures on S^{6} and $S^{3} \times S^{3}$, Ann. of Math. (2), 185 (1): 59-130.

Gray, A. (1965), 'Minimal varieties and almost Hermitian submanifolds', Michigan Math. J. 12: 273-87.

Gray, A. (1976), ‘The structure of nearly Kähler manifolds’, Math. Ann. 223: 233-48.
Madnick, J. (2020), 'Nearly-Kähler 6-manifolds of cohomogeneity two: principal locus', Comm. Anal. Geom. (forthcoming).

Moroianu, A. and Nagy, P.-A. (2019), 'Toric nearly Kähler manifolds’, Ann. Global Anal. Geom. 55 (4): 703-17.

Nagy, P.-A. (2002), 'Nearly Kähler geometry and Riemannian foliations', Asian J. Math. 6 (3): 481-504.

REFERENCES II

Podestà, F. and Spiro, A. (2010), 'Six-dimensional nearly Kähler manifolds of cohomogeneity one', J. Geom. Phys. 60 (2): 156-64.

Russo, G. (2021), 'Multi-moment maps on nearly Kähler six-manifolds', Geom. Dedicata, 213: 57-81.

Russo, G. and Swann, A. F. (2019), 'Nearly Kähler six-manifolds with two-torus symmetry', J. Geom. Phys. 138: 144-53.

Wolf, J. A. and Gray, A. (1968), ‘Homogeneous spaces defined by Lie group automorphisms. I’, J. Differential Geometry, 2: 77-114.

