NEARLY KÄHLER MANIFOLDS WITH SYMMETRY

Andrew Swann

Department of Mathematics & DIGIT, Aarhus University

Aalborg, 4th July, 2023 29th Nordic Congress of Mathematics

Joint work with Giovanni Russo

Russo, G., and Swann, A. F. (2019), 'Nearly Kähler six-manifolds with two-torus symmetry', J. Geom. Phys. 138: 144–53 Russo, G. (2021), 'Multi-moment maps on nearly Kähler six-manifolds', Geom. Dedicata, 213: 57–81 Russo, G., and Swann, A. F. (2023b), The nearly Kähler structure of S³ × S³, in progress Russo, G., and Swann, A. F. (2023a), Nearly Kähler structures from left-invariant flow, in progress

1 BACKGROUND

Nearly Kähler geometry

MULTI-MOMENT MAPS
T²-symmetry

3 **REDUCTION**

- Regular values
- Morse theory

4 HOMOGENEOUS FLOW

- Diagonal flow
- Standard solution
- Singular behaviour

NEARLY KÄHLER GEOMETRY

NEARLY KÄHLER GEOMETRY

Gray (1965): nearly Kähler manifold: almost Hermitian manifold (M, g, J) with

 $(\nabla_X J)X = 0$ and $\nabla J \neq 0$.

and/or

Nagy (2002): complete, $\pi_1(M) = 0$, nearly Kähler are products of

- Kähler manifolds,
- three-symmetric spaces,
- nearly Kähler six-manifolds,

 twistor spaces of positive quaternionic Kähler manifolds.

DIMENSION 6: are positive Einstein (Gray 1976); complete gives compact, $|\pi_1(M)| < \infty$.

Butruille (2005) homogeneous are three-symmetric spaces: S^6 , $\mathbb{CP}(3)$, $F_{1,2}$, $S^3 \times S^3$.

Foscolo and Haskins (2017) new compact examples: cohomogeneity one $(G = SU(2) \times SU(2))$ on $S^3 \times S^3$ and S^6 .

T^2 -Symmetry

Multi-moment maps for T^2 -symmetry

NEARLY KÄHLER EQUATIONS: (M^6, g, J) , 2-form $\sigma = g(J \cdot, \cdot)$, 3-forms $\psi = \psi_+ + i\psi_- \in \Omega^{3,0}(M)$,

$$d\sigma = 3\psi_+$$
 and $d\psi_- = -2\sigma^2$.

 T^2 -symmetry generated by U, V, call

$$\nu = \sigma(U, V), \qquad \nu \colon M \to \mathbb{R} = \Lambda^2 \operatorname{Lie}(T^2)^*,$$

the multi-moment map (Madsen and Swann 2012).

Satisfies

$$d\nu = 3\psi_+(U, V, \cdot)$$
 and $\Delta\nu = 24\nu$.

 $\nu(M) = [a, b]$ is a compact interval containing 0 in its interior.

REDUCTION AT REGULAR VALUES

For $s \neq 0$ a regular value of $\nu = \sigma(U, V)$, $Q^3 = \nu^{-1}(s)/T^2$ is smooth. Define connection one-form $\vartheta = (\vartheta_1, \vartheta_2)$ and basic forms

$$\alpha_0 = \psi_-(U, V, \cdot), \quad \alpha_1 = s\vartheta_1 + V \,\lrcorner\, \sigma, \quad \alpha_2 = s\vartheta_2 - U \,\lrcorner\, \sigma.$$

THEOREM

$$d\alpha_0 = f \alpha_1 \wedge \alpha_2, \quad d(f\alpha_1) \wedge \alpha_0 = 0 = d(f\alpha_2) \wedge \alpha_0,$$

f > 4 smooth on Q^3 , together with a choice of metric H on Span $\{\alpha_1, \alpha_2\}$ determine via a geometric flow a nearly Kähler manifold (often incomplete) with T^2 -symmetry.

Nearly Kähler metric

$$g = \frac{1}{9(h^2 - s^2)}ds^2 + \vartheta^T H \vartheta + \frac{1}{h^2 - s^2}(\alpha_0^2 + \alpha^T H \alpha), \qquad \begin{array}{l} h^2 = \det H \\ = s^2 f/(f - 4). \end{array}$$

MORSE THEORY PICTURE

Nearly Kähler with *T*²-symmetry

Critical set $\nu \neq 0$: *U* and *V* are linearly dependent over $\mathbb{C} = \mathbb{R} + J\mathbb{R}$. Discrete stabilisers.

Critical set $\nu = 0$: quotient space a trivalent graph. Vertices at stabiliser T^2 , edges along stabiliser S^1 .

Known examples have graphs

 $S^{3} \times S^{3}$ O, or $O \subset C$

LEFT-INVARIANT FLOW

 Q^3 is homogeneous with invariant data, then Q is any non-Abelian unimodular group.

Compact case: Q = SU(2) or SO(3), dual basis $de_a = e_b \wedge e_c$, cyclically. Flow diagonalises: $\alpha_1 = v_1e_1$, $\alpha_2 = v_2e_2$, $\alpha_0 = ue_3$,

$$u' = -\frac{4s}{3(h^2 - s^2)}u, \quad v'_i = -\frac{s}{3}\left(\frac{8}{h^2 - s^2} - \frac{v_i}{uv_j h_j}\right)v_i, \quad \{i, j\} = \{1, 2\},$$
$$h'_i = \frac{h_i}{s}\left(-1 + \frac{(h^2 - s^2)v_i}{3uv_j h_j}\right), \quad f = \frac{u}{v_1 v_2} = \frac{4h^2}{h^2 - s^2}.$$

Generically 4-parameter family of solutions.

THEOREM

Although the equations are singular at s = 0, the solutions that are smooth over s = 0 form a 4-parameter family, and near s = 0 this family is open in the set of generic solutions.

7/11

STANDARD THREE-SYMMETRIC SOLUTION

$$\begin{aligned} \alpha_0 &= \frac{8}{27} \sin(2t) e_1, \qquad s = -\frac{4}{3\sqrt{3}} \cos(2t) \text{ with } t \in (0, \pi/2), \\ \alpha_1 &= -\frac{4}{3\sqrt{3}} \frac{\sin(t) \sin(2t)}{2 - \cos(2t)} e_2, \qquad \alpha_2 = -\frac{4}{3\sqrt{3}} \frac{\cos(t) \sin(2t)}{2 + \cos(2t)} e_3, \\ h_1 &= \frac{4}{9} (2 - \cos(2t)), \qquad h_2 = \frac{4}{9} (2 + \cos(2t)). \end{aligned}$$

Gives cohomogeneity-one action of $T^2 \times SU(2)$ on $S^3 \times S^3$. Missing from topological classification of Podestà and Spiro (2010).

Moroianu and Nagy (2019): for any compact nearly Kähler 6-manifold, rank of symmetry group is at most 3. Only known example with such symmetry is the three-symmetric solution on $S^3 \times S^3$.

Previous slide, many local solutions with this symmetry rank.

SINGULAR BEHAVIOUR

For the left-invariant flow on Q = SU(2) or SO(3), there are at most 2 critical values. Critical set is essentially the base of

$$S^1 \longrightarrow T^2 \times SU(2) \longrightarrow S^1 \times S^3.$$

Have a topological parameter for this bundle.

THEOREM

Around each critical value there is a two-parameter family of solutions for each topological parameter.

QUESTION Can one match up these solutions at *s* = 0 to get new compact solutions?

Hoelscher (2010a,b) topologically result is $S^3 \times S^3$. But for non-standard topological parameters the $T^2 \times SU(2)$ -action is not that of the standard example.

REFERENCES I

- Butruille, J.-B. (2005), 'Classification des variétés approximativement kähleriennes homogènes', *Ann. Global Anal. Geom.* 27 (3): 201–25.
- Foscolo, L., and Haskins, M. (2017), 'New G_2 -holonomy cones and exotic nearly Kähler structures on S^6 and $S^3 \times S^3$ ', *Ann. of Math.* (2), 185 (1): 59–130.
- Gray, A. (1965), 'Minimal varieties and almost Hermitian submanifolds', *Michigan Math. J.* 12: 273–87.
- Gray, A. (1976), 'The structure of nearly Kähler manifolds', Math. Ann. 223: 233-48.
- Hoelscher, C. A. (2010a), 'Classification of cohomogeneity one manifolds in low dimensions', *Pacific J. Math.* 246 (1): 129–85.
- Hoelscher, C. A. (2010b), 'Diffeomorphism type of six-dimensional cohomogeneity one manifolds', *Ann. Global Anal. Geom.* 38 (1): 1–9.
- Madsen, T. B., and Swann, A. F. (2012), 'Multi-moment maps', Adv. Math. 229: 2287-309.

REFERENCES II

- Moroianu, A., and Nagy, P.-A. (2019), 'Toric nearly Kähler manifolds', *Ann. Global Anal. Geom.* 55 (4): 703–17.
- Nagy, P.-A. (2002), 'Nearly Kähler geometry and Riemannian foliations', *Asian J. Math.* 6 (3): 481–504.
- Podestà, F., and Spiro, A. (2010), 'Six-dimensional nearly Kähler manifolds of cohomogeneity one', J. Geom. Phys. 60 (2): 156–64.
- Russo, G. (2021), 'Multi-moment maps on nearly Kähler six-manifolds', *Geom. Dedicata*, 213: 57–81.
- Russo, G., and Swann, A. F. (2019), 'Nearly Kähler six-manifolds with two-torus symmetry', *J. Geom. Phys.* 138: 144–53.
- Russo, G., and Swann, A. F. (2023a), *Nearly Kähler structures from left-invariant flow*, in progress.
- Russo, G., and Swann, A. F. (2023b), *The nearly Kähler structure of* $S^3 \times S^3$, in progress.